AI-Orchestrated Communication in Software-Defined Networks: Enhancing Medical Imaging Efficiency and Risk Intelligence via Oracle Cloud Integration

Authors

  • Carmen Teresa Fernández Gómez Data Engineer, Spain Author

DOI:

https://doi.org/10.15662/IJRAI.2024.0705012

Keywords:

Artificial Intelligence (AI), Software-Defined Networking (SDN), Oracle Cloud Infrastructure (OCI), Medical Imaging, Risk Intelligence, Machine Learning (ML), Deep Reinforcement Learning (DRL), Network Orchestration, Cloud-Edge Integration, Predictive Analytics, Healthcare Informatics, Real-Time Communication

Abstract

The convergence of Artificial Intelligence (AI) and Software-Defined Networking (SDN) is reshaping the landscape of intelligent, adaptive, and secure network architectures. This paper introduces an AI-orchestrated communication framework that integrates SDN with Oracle Cloud Infrastructure (OCI) to optimize performance in medical imaging and risk intelligence applications. The proposed system leverages machine learning (ML) and deep reinforcement learning (DRL) models to dynamically orchestrate network resources, minimize latency, and ensure efficient data flow between cloud, edge, and diagnostic systems. By harnessing OCI’s scalable compute and GPU-accelerated environments, the framework enhances medical image processing speeds, improves diagnostic accuracy, and facilitates real-time analytics for clinical decision-making. In parallel, AI-driven risk intelligence modules employ predictive analytics to detect anomalies, forecast failures, and fortify data security across the network. Experimental evaluations demonstrate up to a 40% improvement in communication efficiency and a 30% reduction in processing delay compared to conventional SDN implementations. This research underscores the transformative potential of AI-enabled SDN orchestration in realizing intelligent, reliable, and high-performance infrastructures for healthcare and risk management domains.

References

1. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

2. Archana, R., & Anand, L. (2023, September). Ensemble Deep Learning Approaches for Liver Tumor Detection and Prediction. In 2023 Third International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 325-330). IEEE.

3. Arulraj AM, Sugumar, R., Estimating social distance in public places for COVID-19 protocol using region CNN, Indonesian Journal of Electrical Engineering and Computer Science, 30(1), pp.414-424, April 2023

4. Zerine, Ismoth, Md Mainul Islam, Md Saiful Islam, Md Yousuf Ahmad, and Md Arifur Rahman. "CLIMATE RISK ANALYTICS FOR US AGRICULTURE SUSTAINABILITY: MODELING CLIMATE IMPACT ON CROP YIELDS AND SUPPLY CHAIN TO SUPPORT FEDERAL POLICIES FOOD SECURITY AND RENEWABLE ANERGY ADOPTION." Cuestiones de Fisioterapia 49, no. 3 (2020): 241-258.

5. Kandula N (2023). Gray Relational Analysis of Tuberculosis Drug Interactions A Multi-Parameter Evaluation of Treatment Efficacy. J Comp Sci Appl Inform Technol. 8(2): 1-10.

6. Adari, V. K., Chunduru, V. K., Gonepally, S., Amuda, K. K., & Kumbum, P. K. (2024). Artificial Neural Network in Fibre-Reinforced Polymer Composites using ARAS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(2), 9801-9806.

7. Harish, M., & Selvaraj, S. K. (2023, August). Designing efficient streaming-data processing for intrusion avoidance and detection engines using entity selection and entity attribute approach. In AIP Conference Proceedings (Vol. 2790, No. 1, p. 020021). AIP Publishing LLC.

8. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems.

9. Kreutz, D., Ramos, F. M. V., Verissimo, P., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.

10. Zhang, Y., Lin, K., & Wang, X. (2022). Hybrid edge-cloud architectures for low-latency ML inference: patterns and tradeoffs. IEEE Cloud Computing.

11. Christadoss, J., & Mani, K. (2024). AI-Based Automated Load Testing and Resource Scaling in Cloud Environments Using Self-Learning Agents. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 6(1), 604-618.

12. Adari, V. K. (2020). Intelligent care at scale: AI-powered operations transforming hospital efficiency. International Journal of Engineering & Extended Technologies Research (IJEETR), 2(3), 1240–1249. https://doi.org/10.15662/IJEETR.2020.0203003

13. Konda, S. K. (2023). The role of AI in modernizing building automation retrofits: A case-based perspective. International Journal of Artificial Intelligence & Machine Learning, 2(1), 222–234. https://doi.org/10.34218/IJAIML_02_01_020

14. Nguyen, T. T., & Armitage, G. (2008). A survey of techniques for internet traffic classification using machine learning. IEEE Communications Surveys & Tutorials.

15. Yungaicela-Naula, N. M., Vargas-Rosales, C., & Perez-Diaz, J. A. (2021). SDN-based architecture for transport and application layer DDoS attack detection using machine and deep learning. IEEE Access.

16. GUPTA, A. B., et al. (2023). "Smart Defense: AI-Powered Adaptive IDs for Real-Time Zero-Day Threat Mitigation."

17. Kakulavaram, S. R. (2023). Performance Measurement of Test Management Roles in ‘A’ Group through the TOPSIS Strategy. International Journal of Artificial intelligence and Machine Learning, 1(3), 276. https://doi.org/10.55124/jaim.v1i3.276

18. Rahman, O., Mohammad, A. G. Q., & Chung-Horng, L. (2019). DDoS attacks detection and mitigation in SDN using machine learning. 2019 IEEE World Congress on Services.

19. Scholz, M., & Jung, J. (2020). Model compression and distillation methods for transformer models: a review and practical considerations. Proceedings of relevant workshops.

20. Kesavan, E. (2023). Comprehensive Evaluation of Electric Motorcycle Models: A Data-Driven Analysis. Intelligence, 2, 1. https://d1wqtxts1xzle7.cloudfront.net/124509039/Comprehensive_Evaluation_of_Electric_Motorcycle_Models_A_Data_Driven_Analysis-libre.pdf?1757229025=&response-content-disposition=inline%3B+filename%3DComprehensive_Evaluation_of_Electric_Mot.pdf&Expires=1762367007&Signature=dDZxkDYMFn7bIyGA50Pnj3JVmbzBddJqet6SqGsDkHD9UA2lcoMLnEUzRPZuQMVpLD2hzxlNW99HrH7ZR9Q1BfZ1jjUa8hE1WHVS~xDWoeKq2M3OB9JXYVN4i2d7BrzlSm9YBqgCiDw6Zxp05SZ~B1vW7ChHh8DCl3yqeryoqI0SPItWRxG~lYdCxc7E9nkWNfdcwKGProzKBLwpRtz39HE1zR2p4WQvxwZKKmkKzaUqia--zBw3qxMoUbIEAGLnl1QVotQwMEXoi~EXQXiO0gmPPuTbrvnnW0BXHcm6tFxKkHNWKZDMyOOFSmPkxwf-NTG6ek77X~OpmGAmmY7ICg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

21. Chinthalapelly, P. R., Rao, S. B. S., & Kotapati, V. B. R. (2024). Generative AI for Synthetic Medical Imaging Data Augmentation. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 344-367.

22. Urs, A. D. (2024). AI-Powered 3D Reconstruction from 2D Scans. International Journal of Humanities and Information Technology, 6(02), 30-36.

23. Archana, R., & Anand, L. (2023, May). Effective Methods to Detect Liver Cancer Using CNN and Deep Learning Algorithms. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-7). IEEE.

24. Sugumar, R. (2022). Estimation of Social Distance for COVID19 Prevention using K-Nearest Neighbor Algorithm through deep learning. IEEE 2 (2):1-6.

25. Sudha, N., Kumar, S. S., Rengarajan, A., & Rao, K. B. (2021). Scrum Based Scaling Using Agile Method to Test Software Projects Using Artificial Neural Networks for Block Chain. Annals of the Romanian Society for Cell Biology, 25(4), 3711-3727.

26. Open-source and community tools for hybrid edge-cloud ML orchestration (various authors, 2019–2023). Conference and Practitioner Literature.

Downloads

Published

2024-09-10

How to Cite

AI-Orchestrated Communication in Software-Defined Networks: Enhancing Medical Imaging Efficiency and Risk Intelligence via Oracle Cloud Integration. (2024). International Journal of Research and Applied Innovations, 7(5), 11404-11409. https://doi.org/10.15662/IJRAI.2024.0705012