Intelligent Cloud-Native DevOps Automation Framework: Deep Learning and AI-Guided Hybrid Fuzzy Model Combining WPM, TOPSIS, and PSO for Serverless Software Development
DOI:
https://doi.org/10.15662/IJRAI.2021.0406011Keywords:
Cloud-Native DevOps, Serverless Software Development, Deep Learning, AI-Guided Hybrid Fuzzy Model, Weighted Product Method (WPM), TOPSIS, Particle Swarm Optimization (PSO), Intelligent Automation, Multi-Criteria Decision-Making, Software Optimization, Cloud-Native ArchitectureAbstract
The shift towards cloud-native and serverless architectures has intensified the need for intelligent automation frameworks in software development and DevOps pipelines. This research presents an Intelligent Cloud-Native DevOps Automation Framework that integrates Deep Learning with AI-guided hybrid fuzzy models, leveraging Weighted Product Method (WPM), TOPSIS, and Particle Swarm Optimization (PSO) to optimize software development processes.
The framework addresses challenges in resource allocation, performance optimization, and decision-making under uncertainty. The hybrid fuzzy model captures the inherent vagueness in multi-criteria evaluation, while WPM and TOPSIS systematically rank alternative development strategies. PSO enhances optimization by dynamically adjusting parameters to maximize efficiency and minimize deployment latency.
By incorporating serverless computing, the framework enables scalable, event-driven, and cost-effective execution of DevOps pipelines. Experimental evaluation demonstrates significant improvements in automation efficiency, build reliability, and deployment speed, validating the framework’s capability to support self-adaptive, AI-powered software engineering in cloud-native environments. This study contributes a unified approach combining AI, fuzzy reasoning, optimization algorithms, and serverless cloud infrastructure for next-generation DevOps automation.
References
1. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25(6), 599–616. https://doi.org/10.1016/j.future.2008.12.001
2. Sugumar, R., Rengarajan, A. & Jayakumar, C. Trust based authentication technique for cluster based vehicular ad hoc networks (VANET). Wireless Netw 24, 373–382 (2018). https://doi.org/10.1007/s11276-016-1336-6
3. Usha, G., Babu, M. R., & Kumar, S. S. (2017). Dynamic anomaly detection using cross layer security in MANET. Computers & Electrical Engineering, 59, 231-241.
4. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.
5. Sardana, A., Kotapati, V. B. R., & Shanmugam, L. (2020). AI-Guided Modernization Playbooks for Legacy Mission-Critical Payment Platforms. Journal of Artificial Intelligence & Machine Learning Studies, 4, 1-38.
6. Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113. https://doi.org/10.1145/1327452.1327492
7. Anand, L., & Neelanarayanan, V. (2019). Liver disease classification using deep learning algorithm. BEIESP, 8(12), 5105–5111.
8. Fox, A., & Patterson, D. A. (2009). Engineering long-lasting software: An agile approach using cloud computing. University of California, Berkeley.
9. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Springer.
10. Lin, C. T., & Lee, C. S. G. (1996). Neural fuzzy systems: A neuro-fuzzy synergism to intelligent systems. Prentice Hall.
11. Mishra, A., & Tripathy, A. R. (2016). A comparative study of multi-criteria decision-making methods for software requirement prioritization. International Journal of Computer Applications, 144(9), 1–6.
12. K. Thandapani and S. Rajendran, “Krill Based Optimal High Utility Item Selector (OHUIS) for Privacy Preserving Hiding Maximum Utility Item Sets”, International Journal of Intelligent Engineering & Systems, Vol. 10, No. 6, 2017, doi: 10.22266/ijies2017.1231.17.
13. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2020). Applying design methodology to software development using WPM method. Journal ofComputer Science Applications and Information Technology, 5(1), 1-8.
14. Cherukuri, B. R. (2019). Serverless revolution: Redefining application scalability and cost efficiency. https://d1wqtxts1xzle7.cloudfront.net/121196636/WJARR_2019_0093-libre.pdf?1738736725=&response-content-disposition=inline%3B+filename%3DServerless_revolution_Redefining_applica.pdf&Expires=1762272213&Signature=XCCyVfo54ImYDZxM5lPQQ2nkTOzAKecpW86qlfne0lLpMlvC6WaoSiOBsyS3SyoPj8nAPWdSqFOeiZqIwKsTriCNb6de-mfqXndHQwXRcrA7aVAoQ2txD12Ph36pxjJRJehcVlRK0o878Lh-1nc2mmtJEssNhLC8sVziFBjWuaUiW2Gr0YEZ8ZgIOfHv7gPNREi4JzDmIxpr8eTxb08LoN8KlFSLgouF4SpPoejQYmYOW7JRNijqsMnyhfjSsDv8fdrjSbkb2w-GD7tWhZHVT-1Vu03XPRsjVN-fbMtINmy9tAbgjElqevLlU36g54NdZ8VG4H2pouSeuv55VROnlA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
15. Anugula Sethupathy, Utham Kumar. (2018). Self-Healing Systems and Telemetry-Driven Automation in DevOps Pipelines. International Journal of Novel Research and Development. 3. 148-155. 10.56975/ijnrd.v3i7.309065.
16. Anand, L., & Neelanarayanan, V. (2019). Feature Selection for Liver Disease using Particle Swarm Optimization Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 6434-6439.
17. Selvi, R., Saravan Kumar, S., & Suresh, A. (2014). An intelligent intrusion detection system using average manhattan distance-based decision tree. In Artificial Intelligence and Evolutionary Algorithms in Engineering Systems: Proceedings of ICAEES 2014, Volume 1 (pp. 205-212). New Delhi: Springer India.
18. Shi, Y., & Eberhart, R. C. (1998). A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on Evolutionary Computation (pp. 69–73). IEEE.





