Integrating Business Intelligence with AI-Driven Machine Learning for Next-Generation Intrusion Detection Systems
DOI:
https://doi.org/10.15662/IJRAI.2023.0606007Keywords:
Intrusion Detection Systems (IDS), Business Intelligence (BI), Machine Learning (ML), Artificial Intelligence (AI), Cybersecurity AnalyticsAbstract
Intrusion Detection Systems (IDS) remain essential for defending against increasingly complex cyberattacks. However, older rule-based and signature-based solutions often fail to respond to new threats in real time. In this paper, we suggest a hybrid model that combines Business Intelligence (BI) and Artificial Intelligence (AI)-based Machine Learning (ML) methods. This model aims to develop a next-generation IDS that can alert teams in advance and provide actionable information. The framework uses BI pipelines to consolidate heterogeneous network data. It then applies advanced ML models to identify anomalies and intrusions and feeds these findings back into BI dashboards. These dashboards support decision-making and strategic planning. We evaluate the model on benchmark intrusion datasets and a variety of ML algorithms. We measure accuracy in detection, false positives, and scalability. Results show that the BI+ML method is much more effective in detection. It also helps security teams comprehend attack patterns, assess the impact on resources, and prioritize mitigation. This paper presents a new architecture and roadmap for organizations seeking to evolve IDS from reactive systems into intelligence-driven, adaptive security platforms.
References
[1] Anshari, M., Syafrudin, M., Tan, A., Fitriyani, N. L., & Alas, Y. (2023, January 1). Optimisation of Knowledge Management (KM) with Machine Learning (ML) Enabled. Information (Switzerland). MDPI. https://doi.org/10.3390/info14010035
[2] Al-khateeb, B. A. A. (2024). Business Intelligence (BI). International Journal of Asian Business and Information Management, 15(1), 1–15. https://doi.org/10.4018/ijabim.340387
[3] Chen, Y., & Lin, Z. (2021). Business Intelligence Capabilities and Firm Performance: A Study in China. International Journal of Information Management, 57. https://doi.org/10.1016/j.ijinfomgt.2020.102232
[4] Dutt, I., Borah, S., &Maitra, I. K. (2020). Immune System Based Intrusion Detection System (IS-IDS): A Proposed. IEEE Access, 8, 34929–34941. https://doi.org/10.1109/ACCESS.2020.2973608
[5] Eskandari, M., Janjua, Z. H., Vecchio, M., &Antonelli, F. (2020). Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge Devices. IEEE Internet of Things Journal, 7(8), 6882–6897. https://doi.org/10.1109/JIOT.2020.2970501
[6] Fachri, B., &Harahap, F. H. (2020). SimulasiPenggunaan Intrusion Detection System (IDS) SebagaiKeamananJaringandanKomputer. JURNAL MEDIA INFORMATIKA BUDIDARMA, 4(2), 413. https://doi.org/10.30865/mib.v4i2.2037
[7] Haleem, A., Javaid, M., AsimQadri, M., Pratap Singh, R., &Suman, R. (2022, January 1). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks. KeAi Communications Co. https://doi.org/10.1016/j.ijin.2022.08.005
[8] Hamidinava, F., Ebrahimy, A., Samiee, R., &Didehkhani, H. (2023). A model of business intelligence on cloud for managing SMEs in COVID-19 pandemic (Case: Iranian SMEs). Kybernetes, 52(1), 207–234. https://doi.org/10.1108/K-05-2021-0375
[9] Işik, Ö., Jones, M. C., &Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments. Information and Management, 50(1), 13–23. https://doi.org/10.1016/j.im.2012.12.001
[10] Isik, O., Jones, M. C., &Sidorova, A. (2011). BUSINESS INTELLIGENCE (BI) SUCCESS AND THE ROLE OF BI CAPABILITIES. Intelligent Systems in Accounting, Finance and Management, 18(4), 161–176. https://doi.org/10.1002/isaf.329
[11] Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87–99. https://doi.org/10.1016/j.bushor.2022.03.002
[12] Mannuru, N. R., Shahriar, S., Teel, Z. A., Wang, T., Lund, B. D., Tijani, S., … Vaidya, P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development. https://doi.org/10.1177/02666669231200628
[13] Mudau, T. N., Cohen, J., &Papageorgiou, E. (2024). Determinants and consequences of routine and advanced use of business intelligence (BI) systems by management accountants. Information and Management, 61(1). https://doi.org/10.1016/j.im.2023.103888
[14] Naseer, A., Naseer, H., Ahmad, A., Maynard, S. B., & Siddiqui, A. M. (2023). Moving towards agile cybersecurity incident response: A case study exploring the enabling role of big data analytics-embedded dynamic capabilities. Computers and Security, 135. https://doi.org/10.1016/j.cose.2023.103525
[15] Oslejsek, R., Rusnak, V., Burska, K., Svabensky, V., Vykopal, J., &Cegan, J. (2021). Conceptual model of visual analytics for hands-on cybersecurity training. IEEE Transactions on Visualization and Computer Graphics, 27(8), 3425–3437. https://doi.org/10.1109/TVCG.2020.2977336
[16] Ozkan-Okay, M., Samet, R., Aslan, O., & Gupta, D. (2021). A Comprehensive Systematic Literature Review on Intrusion Detection Systems. IEEE Access. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3129336
[17] Patil, S., Varadarajan, V., Mazhar, S. M., Sahibzada, A., Ahmed, N., Sinha, O., … Kotecha, K. (2022). Explainable Artificial Intelligence for Intrusion Detection System. Electronics (Switzerland), 11(19). https://doi.org/10.3390/electronics11193079
[18] Rehman, M. U., Ullah, R., Allowatia, H., Hasan, T. N., Perween, S., Ain, Q. U., &Ammad, M. (2023). Elaborating the Role of Business Intelligence (BI) in Healthcare Management. Journal of Intelligence Studies in Business, 12(2), 26–35. https://doi.org/10.37380/JISIB.V12I2.952
[19] Rahmani, A. M., Yousefpoor, E., Yousefpoor, M. S., Mehmood, Z., Haider, A., Hosseinzadeh, M., & Ali Naqvi, R. (2021, November 1). Machine learning (Ml) in medicine: Review, applications, and challenges. Mathematics. MDPI. https://doi.org/10.3390/math9222970
[20] Ramadhan, H. F., Fauzi, A., Rupelu, C. N., Aprillia, D. P., Anjani, N. D., &Halimatusadiah. (2022). Pengaruh Business Intelligence Terhadap Perusahaan DalamPengambilanKeputusan : Business Intelligence , Arsitektur Bi Dan Data Warehouse ( KajianStudi Business Intelligence ). JEMSI (JurnalEkonomiManajemenSistemInformasi), 3(6), 639–644. Retrieved from https://www.dinastirev.org/JEMSI/article/download/1105/668
[21] Singh, A., Prakash, J., Kumar, G., Jain, P. K., & Ambati, L. S. (2024). Intrusion Detection System: A Comparative Study of Machine Learning-Based IDS. Journal of Database Management, 35(1). https://doi.org/10.4018/JDM.338276
[22] Su, J., &Zhong, Y. (2022). Artificial Intelligence (AI) in early childhood education: Curriculum design and future directions. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100072
[23] SafanaHyder Abbas, Wedad Abdul KhuderNaser, &Amal Abbas Kadhim. (2023). Subject review: Intrusion Detection System (IDS) and Intrusion Prevention System (IPS). Global Journal of Engineering and Technology Advances, 14(2), 155–158. https://doi.org/10.30574/gjeta.2023.14.2.0031
[24] Sun, P., Liu, P., Li, Q., Liu, C., Lu, X., Hao, R., & Chen, J. (2020). DL-IDS: Extracting features using CNN-LSTM hybrid network for intrusion detection system. Security and Communication Networks, 2020. https://doi.org/10.1155/2020/8890306
[25] Talaoui, Y., Kohtamäki, M., &Rajala, R. (2020). Seeking “strategy” in business intelligence literature: Theorizing BI as part of strategy research. Technology Innovation Management Review, 10(9), 27–37. https://doi.org/10.22215/TIMREVIEW/1387
[26] Vanin, P., Newe, T., Dhirani, L. L., O’Connell, E., O’Shea, D., Lee, B., & Rao, M. (2022, November 1). A Study of Network Intrusion Detection Systems Using Artificial Intelligence/Machine Learning. Applied Sciences (Switzerland). MDPI. https://doi.org/10.3390/app122211752
[27] Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(4), 337–339. https://doi.org/10.1016/j.dsx.2020.04.012
[28] Wang, J., Omar, A. H., Alotaibi, F. M., Daradkeh, Y. I., &Althubiti, S. A. (2022). Business intelligence ability to enhance organizational performance and performance evaluation capabilities by improving data mining systems for competitive advantage. Information Processing and Management, 59(6). https://doi.org/10.1016/j.ipm.2022.103075
[29] Yang, L., Moubayed, A., &Shami, A. (2022). MTH-IDS: A Multitiered Hybrid Intrusion Detection System for Internet of Vehicles. IEEE Internet of Things Journal, 9(1), 616–632. https://doi.org/10.1109/JIOT.2021.3084796
[30] Zhao, Y., & Liu, Q. (2023). Causal ML: Python package for causal inference machine learning. SoftwareX, 21. https://doi.org/10.1016/j.softx.2022.101294





