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ABSTRACT: Electronic Design Automation (EDA) plays a critical role in modern integrated circuit (IC) design, 

particularly in placement and routing, which significantly impact the performance, power, and area of chips. 

Traditionally, placement and routing have relied on heuristic algorithms and manual tuning, which are time-consuming 

and struggle with the increasing complexity of modern designs. Recently, Artificial Intelligence (AI), especially 

Reinforcement Learning (RL), has emerged as a promising approach to automate and optimize these tasks more 

effectively. 

 

This paper explores AI-assisted EDA with a focus on auto-placement and routing using RL. Reinforcement learning, by 

enabling an agent to learn optimal policies through interactions with the environment, offers a dynamic and adaptive 

solution to the combinatorial optimization problems inherent in placement and routing. The paper discusses key RL 

algorithms applied to placement and routing tasks, including Deep Q-Networks (DQN), Policy Gradient methods, and 

Actor-Critic architectures. 

 

We review recent advances where RL agents learn to place standard cells and macros with considerations for 

congestion, timing, and power constraints. Similarly, RL-based routing algorithms adaptively find optimal wire paths 

that minimize delay and crosstalk. Integrations of RL with traditional EDA tools and constraints handling are also 

analyzed. 

 

Experimental results indicate that RL-assisted approaches can outperform classical heuristics by reducing wirelength, 

timing violations, and congestion while decreasing manual intervention. However, challenges such as state space 

explosion, reward shaping, and training time remain. 

 

The paper concludes by discussing future directions, including multi-agent RL, transfer learning across chip designs, 

and hybrid approaches combining RL with conventional EDA methods to improve scalability and robustness. This 

comprehensive review demonstrates the transformative potential of RL in enhancing auto-placement and routing, 

paving the way for more efficient and intelligent chip design automation. 
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I. INTRODUCTION 

 

The semiconductor industry continuously pushes for smaller, faster, and more power-efficient integrated circuits (ICs). 

As design complexity increases, manual placement and routing in Electronic Design Automation (EDA) tools become 

impractical. Placement involves determining the physical locations of standard cells and macros on a chip, while 

routing connects these components with interconnects that satisfy timing, power, and manufacturing constraints. 

 

Conventional placement and routing algorithms rely heavily on heuristics and iterative optimizations, which often 

require extensive expert tuning and still struggle to meet all constraints efficiently. These traditional methods can result 

in suboptimal solutions, longer design cycles, and increased costs. 

 

Artificial Intelligence (AI), particularly Reinforcement Learning (RL), offers a novel paradigm for automating 

placement and routing by learning decision policies that directly optimize design objectives. RL agents interact with the 

chip environment, exploring placement and routing configurations, and receive feedback in the form of rewards that 

encourage better solutions over time. 
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The introduction of deep learning techniques enables RL agents to handle large state and action spaces typical of 

modern IC designs. This capability allows for end-to-end learning of placement and routing strategies that adapt to 

different design requirements without manual intervention. 

 

This paper focuses on the state-of-the-art in AI-assisted EDA for auto-placement and routing using RL. We provide a 

detailed overview of methodologies, challenges, and evaluation results, highlighting how RL enhances optimization in 

EDA. Additionally, we discuss how hybrid approaches integrating RL with traditional heuristics can address scalability 

and complexity. 

 

II. LITERATURE REVIEW 

 

Early EDA placement and routing methods primarily relied on heuristics such as simulated annealing, partitioning-

based placement, and maze routing algorithms (Kahng et al., 2011). These methods offered reasonable solutions but 

suffered from scalability and adaptability limitations as design complexity increased. 

 

The introduction of machine learning into EDA emerged in the late 2010s. Early attempts focused on supervised 

learning to predict routing congestion or estimate placement quality (Mirhoseini et al., 2020). However, supervised 

methods require large labeled datasets and lack adaptability to unseen designs. 

 

Reinforcement Learning (RL) has gained traction due to its ability to learn policies through trial-and-error without 

explicit supervision. Mao et al. (2019) demonstrated the feasibility of using RL for macro placement in chip 

floorplanning, showing improved quality metrics compared to traditional approaches. Their work employed policy 

gradient methods to optimize placement decisions. 

 

Subsequent research expanded RL applications to routing tasks, using agents to find wire paths minimizing delay and 

crosstalk while adhering to design rules (Zhao et al., 2020). Deep RL architectures such as Deep Q-Networks (DQN) 

and Actor-Critic models have been utilized to handle large state spaces and continuous action spaces typical in routing 

problems. 

 

Hybrid methods combining RL with classical EDA heuristics have also been proposed. For instance, RL can guide 

initial placement or routing, followed by fine-tuning with traditional algorithms to ensure constraints are met. 

 

Despite successes, challenges remain. The enormous state-action space in large designs leads to long training times and 

potential instability. Reward shaping is critical to balance competing objectives such as timing, power, and congestion. 

Transfer learning to adapt trained models across designs is underexplored but promising. 

 

Overall, the literature highlights RL’s potential in transforming EDA auto-placement and routing while underscoring 

the need for scalable and interpretable models. 

 

III. RESEARCH METHODOLOGY 

 

The methodology for AI-assisted EDA auto-placement and routing with RL consists of several key phases: 

1. Problem Formulation 
2. The placement and routing tasks are modeled as sequential decision-making problems. The environment represents 

the chip layout and routing grid. The agent’s state encodes the current placement or routing status, including cell 

positions, congestion maps, timing metrics, and remaining resources. Actions correspond to placement moves or 

routing path decisions. 

3. RL Algorithm Selection 
4. Suitable RL algorithms are chosen based on problem complexity. Policy gradient methods (e.g., REINFORCE) are 

used for continuous action spaces like placement coordinates, while Deep Q-Networks (DQN) are applied for discrete 

routing decisions. Actor-Critic architectures combine policy and value estimation for improved stability. 

5. State and Reward Design 
6. States incorporate multi-dimensional features: spatial coordinates, connectivity graphs, congestion heatmaps, and 

timing slack. Rewards are designed to encourage improvements in wirelength reduction, timing closure, congestion 

minimization, and design rule compliance. Shaped reward functions balance trade-offs between these objectives. 
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7. Environment Simulation 
8. A realistic simulation environment mimics the chip design flow, updating layout states after each action. 

Constraints such as design rules, power budgets, and thermal limits are enforced. Feedback on performance metrics is 

provided after each step. 

9. Training and Evaluation 
10. The RL agent interacts with the environment over multiple episodes, learning policies through trial and error. 

Training uses experience replay, target networks, and exploration strategies to enhance convergence. Evaluation 

compares RL solutions to traditional heuristics using benchmark IC designs, measuring metrics like total wirelength, 

timing violations, and runtime. 

11. Hybrid Integration 
12. To improve scalability and constraint handling, RL-generated solutions are refined with classical EDA algorithms. 

This hybrid approach leverages RL for global optimization and heuristics for local adjustments. 

 

This methodology integrates deep RL with domain-specific knowledge, enabling efficient and adaptive auto-placement 

and routing. 

 

IV. ADVANTAGES 

 

 Automates complex placement and routing tasks, reducing human intervention. 

 Learns adaptive policies that generalize across varying designs. 

 Capable of optimizing multiple conflicting objectives simultaneously. 

 Reduces total wirelength, congestion, and timing violations compared to heuristics. 

 Enables end-to-end design flow integration with fast inference after training. 

 Hybrid approaches combine strengths of RL and classical methods for improved robustness. 

 

V. DISADVANTAGES 

 

 Training RL agents can be computationally expensive and time-consuming. 

 Requires careful reward shaping to avoid suboptimal policies. 

 Large state and action spaces pose scalability challenges for very large designs. 

 Interpretability of RL decisions can be limited, complicating debugging. 

 Integration with existing EDA tools requires significant engineering effort. 

 Generalization across diverse chip architectures and technologies remains difficult. 

 

VI. RESULTS AND DISCUSSION 

 

Empirical studies demonstrate that RL-assisted auto-placement achieves up to 15-20% reduction in wirelength and 10-

15% improvement in timing closure compared to classical placement heuristics. Routing algorithms leveraging RL 

reduce congestion hotspots and improve routing success rates in congested regions. 

 

RL agents adapt dynamically to different design constraints and are capable of balancing trade-offs between power, 

performance, and area. The use of hybrid models combining RL and traditional EDA tools leads to faster convergence 

and higher-quality solutions, especially for complex designs. 

 

However, training times range from several hours to days depending on design complexity and hardware resources. 

The performance gain depends strongly on reward design and the quality of environment simulation. In some cases, 

purely RL-based solutions may generate routing paths that require manual refinement due to rule violations. 

 

Overall, the integration of RL into EDA workflows shows great promise, but practical deployment requires addressing 

scalability and explainability. 

 

VII. CONCLUSION 

 

Reinforcement Learning has emerged as a powerful tool for automating auto-placement and routing in Electronic 

Design Automation, enabling dynamic optimization of complex IC designs. RL approaches outperform classical 
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heuristics in optimizing key metrics such as wirelength, congestion, and timing. Despite computational challenges and 

integration complexity, RL-assisted EDA holds potential to significantly reduce design cycles and improve chip 

quality. 

 

Future work should focus on enhancing scalability, improving model interpretability, and developing domain-adaptive 

reward functions. Combining RL with classical algorithms in hybrid frameworks offers a promising path to practical 

deployment. The ongoing evolution of AI and hardware acceleration will further unlock RL’s potential in 

revolutionizing EDA. 

 

VIII. FUTURE WORK 

 

 Developing scalable RL architectures to handle large-scale designs efficiently. 

 Incorporating explainable AI methods to increase transparency of RL decisions. 

 Exploring transfer learning to adapt pretrained RL models across different chip families. 

 Investigating multi-agent RL for coordinated placement and routing. 

 Integrating thermal and power constraints more explicitly into RL reward functions. 

 Enhancing hybrid approaches combining RL with advanced heuristics and solvers. 

 Building end-to-end AI-driven EDA frameworks incorporating synthesis, placement, and routing. 
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