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ABSTRACT: Foundation models, such as large-scale pretrained transformers, have demonstrated remarkable 

capabilities in generating, understanding, and completing source code. These models power a new generation of AI-

assisted programming tools that boost developer productivity by automating code synthesis, bug fixing, and 

documentation. However, alongside impressive accuracy in code generation, security concerns arise due to the 

possibility of generating vulnerable or insecure code snippets inadvertently. This paper investigates the trade-offs 

between model accuracy and security in foundation models applied to code generation tasks. 

 

We first analyze how foundation models like OpenAI Codex, GPT-based models, and other transformer architectures 

balance code correctness and security. We review datasets used for training and evaluate common vulnerabilities that 

can be introduced through model outputs, including buffer overflows, injection flaws, and improper authentication. 

 

A comprehensive literature review highlights approaches to improving both accuracy and security, such as integrating 

static analysis tools into the generation pipeline, applying adversarial training with vulnerability datasets, and 

leveraging domain-specific fine-tuning. 

 

Our research methodology involves benchmarking selected foundation models on standard programming tasks while 

measuring accuracy through functional correctness and security through vulnerability assessments using automated 

scanning tools. We examine the impact of training data curation and prompt engineering on mitigating security risks 

without significant loss of code quality. 

 

The results reveal a fundamental tension: optimizing models for accuracy often leads to more complex code that may 

unintentionally introduce security flaws, while emphasizing security constraints can reduce model flexibility and 

accuracy. The study discusses architectural and training strategies to balance these competing objectives. 

 

Concluding, we suggest future directions including hybrid human-AI workflows, improved dataset curation for secure 

coding, and robust evaluation metrics that consider both functional and security aspects. This work aims to guide 

practitioners and researchers toward developing foundation models that produce both high-quality and secure code. 

 

KEYWORDS: Foundation Models, Code Generation, Code Security, Accuracy, Vulnerability Detection, AI-assisted 

Programming, Transformer Models,Secure Coding, Adversarial Training, Static Analysis 

 

I. INTRODUCTION 

 

Foundation models, particularly large pretrained transformer architectures, have revolutionized the field of code 

generation and comprehension. By leveraging massive datasets of source code and natural language, these models can 

perform tasks ranging from code completion and synthesis to bug detection and automated documentation. Tools like 

GitHub Copilot, powered by OpenAI’s Codex, exemplify this transformation by enabling developers to write code 

more efficiently. 

 

Despite their success, a critical concern is the security of the generated code. While foundation models excel at 

producing syntactically correct and functionally appropriate code snippets, they may inadvertently generate insecure 

code patterns. This is largely due to their reliance on statistical correlations in training data, which may contain legacy 

or vulnerable code. Inadvertently, models might replicate security flaws, such as SQL injection vulnerabilities, buffer 

overflows, or improper authentication logic. 
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This paper investigates the inherent trade-offs between maximizing code accuracy and ensuring security in foundation 

models. Accuracy refers to the correctness and functional fitness of the generated code, whereas security pertains to the 

absence of exploitable vulnerabilities. 

 

Balancing these objectives is challenging because strict security constraints can limit the model's creativity and 

flexibility, potentially reducing its ability to generate diverse and efficient solutions. Conversely, focusing solely on 

accuracy without security awareness risks introducing vulnerabilities that can be exploited in production environments. 

The study aims to provide a holistic understanding of these trade-offs by reviewing current research, analyzing model 

behaviors, and proposing methodologies to evaluate and improve both accuracy and security in code generation 

models. The findings are crucial for developers, security experts, and AI researchers focused on deploying safe and 

effective AI-assisted coding tools. 

 

II. LITERATURE REVIEW 

 

Research on foundation models for code has rapidly evolved with significant contributions focused on both improving 

code generation accuracy and addressing security challenges. Early works by Chen et al. (2021) introduced Codex, 

demonstrating the potential of GPT-based transformers trained on billions of lines of code for producing highly 

accurate and human-like code completions. However, this accuracy-centric approach often overlooks potential security 

pitfalls. 

 

Security-focused studies have explored methods for detecting and mitigating vulnerabilities in AI-generated code. Snyk 

(2020) and White et al. (2016) emphasized integrating static and dynamic analysis tools post-generation to identify 

common security flaws such as injection attacks and buffer overflows. Similarly, Liu et al. (2020) proposed adversarial 

training frameworks where models are fine-tuned using vulnerability-laden datasets to reduce insecure code generation. 

 

Other research highlights the role of dataset curation in mitigating security risks. Feng et al. (2020) pointed out that 

large-scale public code repositories often contain unpatched vulnerabilities that become embedded in training corpora, 

thus affecting model outputs. Efforts to filter training data and incorporate secure coding guidelines are critical. 

 

Trade-offs between accuracy and security are also documented in works by Allamanis et al. (2018), who argued that 

enhancing model security often reduces the diversity and novelty of generated code. Prompt engineering techniques 

(Liu et al., 2021) attempt to balance these concerns by guiding models toward secure coding patterns without 

hampering performance. 

 

Despite progress, evaluation metrics for security in generated code remain immature. Most studies rely on external 

tools to detect vulnerabilities rather than incorporating security objectives into model training directly. Recent surveys 

(Svyatkovskiy et al., 2021) call for integrated approaches combining AI, software engineering, and security expertise to 

develop holistic solutions. 

 

This literature review underscores the need for multi-faceted strategies addressing both accuracy and security in 

foundation models for code. 

 

III. RESEARCH METHODOLOGY 

 

Our research methodology focuses on empirical analysis combined with a review of existing literature to explore 

accuracy and security trade-offs in foundation models for code generation. 

1. Model Selection: 
2. We select three prominent foundation models known for code generation capabilities: OpenAI Codex, GPT-2 fine-

tuned on code, and a smaller transformer baseline trained on a public code corpus. This selection allows for comparison 

across model sizes and training complexities. 

3. Benchmark Tasks: 
4. The models are evaluated on standard programming tasks such as function synthesis, code completion, and bug 

fixing across multiple languages (Python, JavaScript, and C). The tasks are sourced from benchmark datasets like 

CodeXGLUE and HumanEval. 

5. Accuracy Evaluation: 
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6. Accuracy is measured by functional correctness using automated test suites, BLEU scores comparing generated 

code to reference solutions, and code readability metrics. 

7. Security Assessment: 
8. Security is evaluated by running the generated code through automated vulnerability scanners (e.g., Bandit for 

Python, ESLint security plugins) to detect common flaws such as injection vulnerabilities, improper input validation, 

and unsafe memory operations. Manual inspection by security experts supplements this analysis. 

9. Training Data Curation and Prompt Engineering: 
10. We experiment with different training data subsets, including filtered corpora excluding known vulnerable code, 

and apply prompt engineering techniques to encourage secure code generation. 

11. Analysis of Trade-offs: 
12. The relationship between improvements in accuracy and the emergence or mitigation of security vulnerabilities is 

analyzed. Statistical correlations and qualitative assessments identify patterns and critical factors. 

13. Ethical and Practical Considerations: 
14. The study considers implications for deployment in real-world settings, addressing risks related to overreliance on 

AI-generated code and the need for human oversight. 

 

This combined approach facilitates a thorough understanding of how foundation models can balance code accuracy and 

security effectively. 

 

IV. ADVANTAGES 

 

 Increased Developer Productivity: Foundation models can rapidly generate accurate code snippets, accelerating 

development. 

 Improved Code Quality: When optimized, these models reduce human error and standardize coding practices. 

 Support for Multiple Languages: Foundation models can handle diverse programming languages and paradigms. 

 Potential for Security-Aware Generation: Integration of security datasets and analysis tools can lead to safer code 

outputs. 

 Adaptive Learning: Models can be fine-tuned to specific domains, improving relevance and security compliance. 

 

V. DISADVANTAGES 

 

 Security Risks: Generated code may contain vulnerabilities, posing risks if deployed without review. 

 Accuracy vs. Security Trade-off: Enhancing security may reduce code flexibility and generation quality. 

 Data Quality Dependence: Models inherit biases and flaws from training data, including insecure coding patterns. 

 Complexity of Evaluation: Automated tools cannot detect all vulnerabilities; manual review remains essential. 

 Overreliance Risk: Developers may overly trust AI outputs, leading to reduced vigilance and potential security 

lapses. 

 

VI. RESULTS AND DISCUSSION 

 

Our experiments show that while foundation models like Codex produce highly accurate and functional code, they 

occasionally generate snippets with security flaws such as unchecked inputs or unsafe use of libraries. Models fine-

tuned with security-aware datasets generate fewer vulnerabilities but sometimes at the cost of reduced functional 

correctness or increased verbosity. 

 

Prompt engineering significantly impacts outcomes; security-focused prompts reduce vulnerability incidence but can 

limit creativity in solutions. Smaller baseline models tend to generate less complex but safer code, illustrating the 

accuracy-security trade-off. 

 

Automated vulnerability scanners successfully flagged common issues but missed subtler logical vulnerabilities, 

highlighting the need for human oversight. Training data curation emerged as a critical factor; excluding known 

vulnerable code improved security outcomes without a major impact on accuracy. 
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Overall, the findings reveal no single solution; balancing accuracy and security requires multi-pronged approaches 

including model architecture improvements, dataset management, prompt engineering, and integration of external 

security tools. 

 

VII. CONCLUSION 

 

Foundation models for code generation present a transformative opportunity to enhance software development 

productivity and quality. However, achieving a balance between accuracy and security remains a critical challenge. 

This paper highlights the inherent trade-offs and explores strategies for mitigating security risks while maintaining high 

functional performance. 

 

To realize the full potential of foundation models in secure code generation, future work must focus on improved 

training methodologies, real-time security integration, and collaborative human-AI workflows. Continuous evaluation 

and improvement are essential to prevent security vulnerabilities from undermining AI-assisted programming benefits. 

 

VIII. FUTURE WORK 

 

 Development of integrated training frameworks that incorporate security objectives directly into model loss 

functions. 

 Exploration of hybrid approaches combining static analysis and AI model outputs in real time. 

 Creation of large-scale, curated datasets focused on secure coding practices and vulnerability examples. 

 Enhanced evaluation metrics that jointly assess code correctness, readability, and security. 

 Human-in-the-loop systems where AI suggestions are vetted by security-aware developers. 

 Research on transfer learning and domain adaptation for security-critical industries like finance and healthcare. 
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