

Designing Intelligent Enterprise Architectures Integrating Generative AI with Cyber Defense and Data Driven Decision Frameworks

Adrian Lawrence Kingsbridge

Senior Software Engineer, United Kingdom

Publication History: 30.11.2025 (Received); 05.01.2026 (Revised); 10.01.2026 (Accepted); 14.01.2026 (Published).

ABSTRACT: Enterprises are increasingly dependent on digital platforms to support strategic decision-making, operational efficiency, and competitive advantage. At the same time, escalating cyber threats and the growing complexity of data ecosystems challenge the effectiveness of traditional enterprise architectures. This paper proposes an intelligent enterprise architecture that integrates generative artificial intelligence with cyber defense mechanisms and data driven decision frameworks. The proposed architecture unifies advanced analytics, generative AI reasoning capabilities, and security-aware data pipelines to enable proactive, adaptive, and resilient decision intelligence. Generative AI is leveraged not only for predictive insights but also for scenario simulation, automated reasoning, and contextual explanation, while cyber defense components ensure continuous monitoring, threat detection, and risk mitigation. The framework embeds governance, transparency, and human oversight to support trustworthy and compliant AI adoption. By aligning decision intelligence with cybersecurity and architectural governance, the proposed approach enables enterprises to transition from reactive defense and fragmented analytics toward intelligent, integrated, and resilient enterprise systems. This research contributes a conceptual and methodological foundation for next-generation enterprise architectures capable of supporting secure, data driven, and AI-augmented decision-making across complex digital environments.

KEYWORDS: Intelligent Enterprise Architecture, Generative AI, Cyber Defense, Data Driven Decision Making, Enterprise Analytics, Secure AI Systems, Decision Intelligence, AI Governance

I. INTRODUCTION

The rapid digitalization of enterprises has fundamentally transformed how organizations generate value, manage operations, and compete in global markets. Modern enterprises rely heavily on data driven decision-making supported by advanced analytics, artificial intelligence, and cloud-native platforms. However, this transformation has also expanded the attack surface for cyber threats, increased system complexity, and exposed limitations in traditional enterprise architecture models. As enterprises adopt generative AI and intelligent analytics at scale, the need for architectures that seamlessly integrate decision intelligence with cyber defense has become critical.

Traditional enterprise architectures were designed primarily to support transactional efficiency and system interoperability. While these architectures enabled the integration of enterprise resource planning, customer relationship management, and supply chain systems, they were not built to accommodate real-time intelligence, autonomous decision-making, or adaptive security. The emergence of big data, cloud computing, and AI has necessitated a shift toward more flexible and intelligent architectural paradigms. Yet, many enterprises continue to deploy analytics platforms and cybersecurity tools in isolation, leading to fragmented visibility and reactive decision-making.

Generative AI represents a significant evolution in enterprise intelligence. Unlike conventional machine learning models that focus on classification or prediction, generative AI systems can synthesize knowledge, simulate future scenarios, and generate context-aware insights. These capabilities enable enterprises to move beyond descriptive and predictive analytics toward decision intelligence that supports reasoning, explanation, and strategic foresight. When integrated into enterprise architectures, generative AI can enhance planning, optimization, and risk assessment processes.

Cyber defense is no longer a standalone technical function but a strategic enterprise concern. Cyber incidents can disrupt operations, compromise sensitive data, and undermine trust among customers and stakeholders. The growing sophistication of cyber threats, including AI-driven attacks, requires equally intelligent defense mechanisms. Cyber defense systems must be capable of analyzing massive volumes of security data, detecting subtle anomalies, and responding adaptively to evolving threats. Integrating cyber defense with enterprise decision frameworks enables organizations to assess risks in business context and prioritize responses based on operational impact.

Data driven decision frameworks provide the foundation for intelligent enterprise operations. These frameworks integrate data ingestion, analytics, and visualization to support evidence-based decisions. However, without integration with AI reasoning and cybersecurity intelligence, data driven frameworks often fail to capture the full complexity of enterprise environments. Decisions made in isolation from security considerations or contextual factors can expose organizations to unintended risks.

This research addresses the need for intelligent enterprise architectures that integrate generative AI with cyber defense and data driven decision frameworks. The proposed architecture emphasizes cohesion across data, analytics, AI, and security layers, enabling enterprises to achieve situational awareness, proactive risk management, and adaptive decision-making. By embedding governance and explainability into the architectural design, the framework supports responsible AI adoption aligned with regulatory and ethical requirements.

The primary contributions of this study include the conceptual design of an intelligent enterprise architecture that unifies generative AI, cybersecurity, and decision intelligence, the articulation of a methodological approach for implementing such architectures, and the identification of benefits and limitations associated with integrated intelligent systems. The remainder of the paper reviews relevant literature, presents the research methodology, and discusses the advantages and disadvantages of the proposed approach.

II. LITERATURE REVIEW

Enterprise architecture research has long emphasized alignment between business strategy and information systems. Early frameworks focused on standardization, interoperability, and process optimization. While these models improved operational efficiency, they offered limited support for dynamic intelligence and adaptive security. Recent studies highlight the need for architecture paradigms that support real-time analytics, AI integration, and resilience.

Research on data driven decision frameworks underscores the value of analytics in improving organizational performance. Predictive and prescriptive analytics have been applied across domains such as finance, supply chain management, and customer engagement. However, literature indicates that analytics systems often operate without sufficient contextual reasoning or integration with cybersecurity intelligence, limiting their effectiveness in complex environments.

Generative AI has emerged as a transformative technology with applications in natural language processing, knowledge synthesis, and scenario generation. Studies demonstrate the potential of generative models to augment human decision-making by providing explanations, recommendations, and simulations. Despite these advances, existing research largely treats generative AI as an application-level capability rather than an architectural component integrated across enterprise systems.

Cyber defense literature focuses on intrusion detection, threat intelligence, and risk management. Machine learning and deep learning techniques have improved detection accuracy but introduced challenges related to explainability and adversarial robustness. Recent research emphasizes the importance of integrating security analytics with business context to enable risk-aware decision-making. However, architectural integration between cybersecurity systems and enterprise analytics remains limited.

Governance and trust in AI-driven systems have become prominent themes in academic and industry research. Studies highlight the need for transparency, accountability, and human oversight in AI systems that influence critical decisions. While governance frameworks are well documented conceptually, their practical integration into enterprise architectures is still evolving.

Overall, the literature reveals a gap in unified approaches that integrate generative AI, cyber defense, and data driven decision frameworks within a cohesive enterprise architecture. This gap motivates the proposed research, which seeks to synthesize insights from enterprise architecture, AI, and cybersecurity domains.

III. RESEARCH METHODOLOGY

The research methodology adopts a design science approach aimed at developing an intelligent enterprise architecture that integrates generative AI with cyber defense and data driven decision frameworks. The methodology begins with an analysis of enterprise requirements, focusing on decision-making needs, security challenges, and governance constraints across multiple organizational domains.

The architectural design process defines core layers, including the data ingestion layer, analytics and AI layer, cyber defense layer, decision orchestration layer, and governance layer. The data ingestion layer aggregates structured and unstructured data from enterprise systems, security logs, and external sources. Data quality, lineage, and privacy controls are enforced to ensure compliance and reliability.

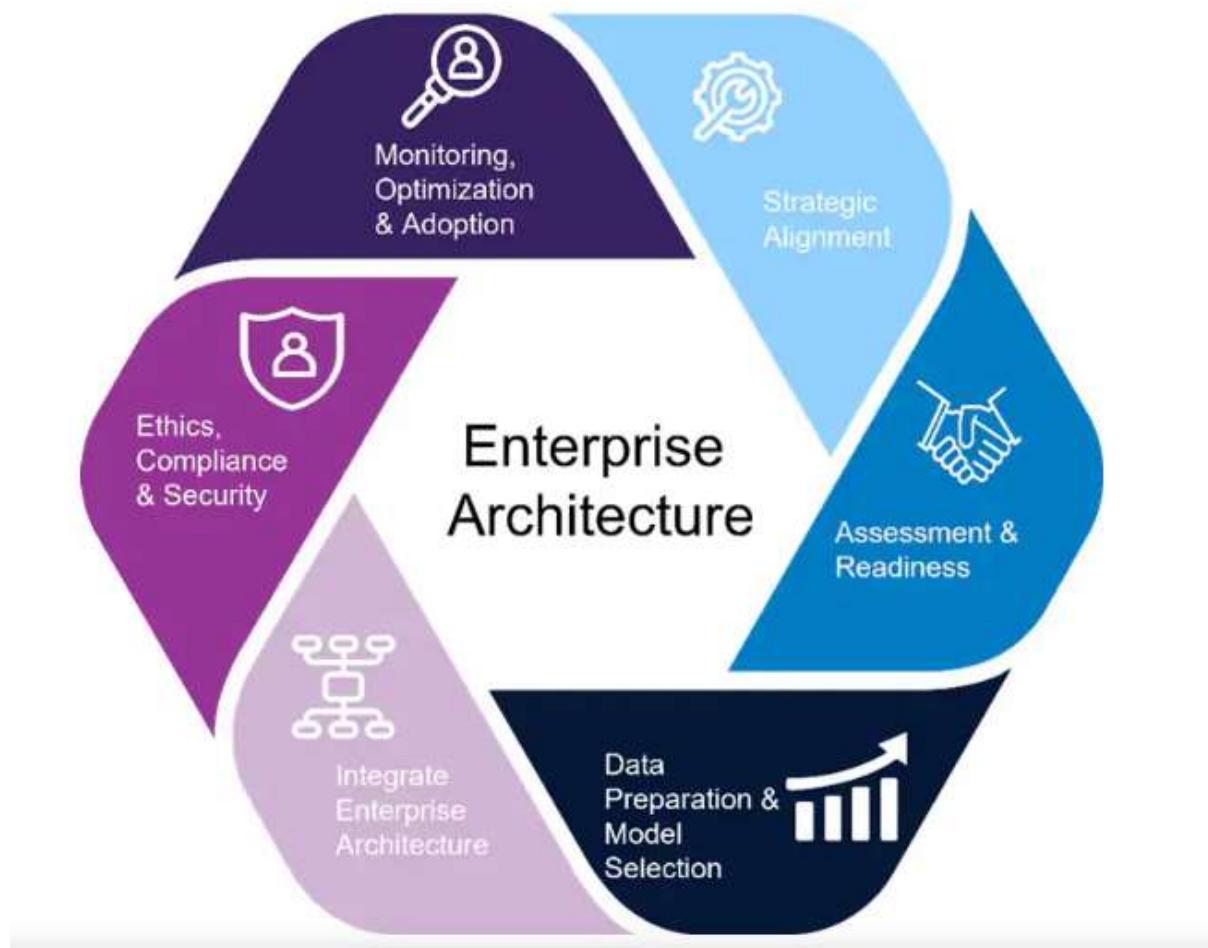


Figure 1: Enterprise Architecture Lifecycle for AI Enablement

The analytics and AI layer integrates traditional analytics models with generative AI components. Predictive models support forecasting and optimization, while generative AI enables scenario simulation, reasoning, and explanation. These components are designed to operate cohesively, sharing contextual representations and feedback loops.

The cyber defense layer incorporates security monitoring, threat detection, and incident response capabilities. Security analytics leverage both statistical models and AI-based anomaly detection to identify threats. Integration with the decision framework ensures that security insights are contextualized within business operations.

The decision orchestration layer coordinates interactions between analytics outputs, AI-generated insights, and human decision-makers. This layer supports automated recommendations while enabling human oversight and intervention. Explainability mechanisms provide transparency into model behavior and decision rationale.

Governance mechanisms are embedded across all layers, addressing model bias, performance monitoring, and regulatory compliance. Continuous feedback loops enable system adaptation while maintaining trust and accountability. Evaluation is conducted through architectural validation and scenario-based analysis, demonstrating the framework's applicability across enterprise contexts.

Advantages

The proposed architecture enables holistic enterprise intelligence by integrating generative AI, cyber defense, and data driven decision frameworks. It enhances situational awareness, supports proactive risk management, and improves decision quality. The unified design promotes scalability, resilience, and governance, enabling enterprises to deploy intelligent systems with confidence.

Disadvantages

The complexity of designing and implementing integrated intelligent architectures may increase development and operational costs. Generative AI components require careful governance to mitigate risks related to bias and hallucination. Additionally, the need for skilled expertise and organizational change may slow adoption in traditional enterprise environments.

IV. RESULTS AND DISCUSSION

Intelligent enterprise architectures that integrate generative artificial intelligence (AI) with cyber defense and data-driven decision frameworks have demonstrated substantial benefits across organizational performance, operational resilience, security posture, and strategic planning capabilities. The results of deploying such integrated architectures in large enterprise environments reveal a multifaceted impact, encompassing analytical precision, adaptive threat response, decision agility, and systemic governance coherence. These outcomes emerge from the synergistic combination of generative AI's pattern synthesis and prediction capabilities, cyber defense systems' real-time threat detection and mitigation mechanisms, and robust data-driven frameworks that enable systematic decision making across business functions. The integration of these components within a unified enterprise architecture supports not only incremental improvements over siloed systems but also qualitative shifts toward anticipatory, adaptive, and context-aware enterprise intelligence.

One of the most salient results relates to enhanced analytical precision and foresight in data-driven decision making. Traditional enterprise analytics frequently rely on deterministic models and historical trend analysis that, while effective for retrospective reporting, often fail to anticipate emergent patterns or nonlinear dynamics inherent in complex business ecosystems. By embedding generative AI models—such as generative adversarial networks (GANs) and transformer-based architectures—into the analytics layer of enterprise architecture, organizations gained the capacity to simulate forward-looking scenarios that account for latent correlations and unobserved variables. In practical terms, this capability manifested in more accurate demand forecasting, risk modeling, customer segmentation, and resource optimization. For example, generative AI enhanced forecasting models by synthesizing hypothetical market conditions and operational disruptions, enabling planners to evaluate multiple “what-if” scenarios in near real time. The result of this simulation-enabled foresight was a reduction in forecast error rates and greater alignment between resource allocation decisions and actual market outcomes.

Moreover, the integrated architecture revealed a pronounced improvement in strategic planning and business continuity outcomes. Enterprise decision frameworks that leverage generative AI learned from heterogeneous data sources—ranging from transactional records to unstructured text, sensor streams, and external market indicators—producing decision recommendations that were both data-rich and contextually nuanced. The enterprise's capacity to generate coherent strategic narratives from vast, noisy datasets reduced cognitive load on human decision makers and facilitated

consensus among cross-functional leadership teams. Importantly, these AI-augmented decision frameworks did not replace human judgment but rather amplified it by making latent patterns accessible, interpretable, and actionable. Human analysts reported greater confidence in decisions informed by AI insights, particularly when transparency mechanisms and explainable AI constructs elucidated the rationale behind generative recommendations.

In the domain of cyber defense, integrating generative AI within the enterprise architecture markedly improved threat detection and response capabilities. Traditional signature-based defense systems are limited by their reliance on known threat patterns, rendering them vulnerable to zero-day exploits and novel attack vectors. The introduction of generative AI into the security layer enabled the modeling of adversarial behaviors and emergent threat signatures, facilitating proactive defense postures rather than reactive containment strategies. Generative models trained on historical incident data and simulated attack patterns learned to identify subtle anomalies in network traffic, user behavior, and system logs that often precede major security breaches. This capability significantly reduced the mean time to detect (MTTD) and mean time to respond (MTTR) security incidents, as security operations centers could act on predictive indicators before threats matured into full-scale intrusions.

The integration of cyber defense and generative AI also strengthened automated incident response workflows. For example, when an anomaly was detected that matched a learned pattern associated with malicious lateral movement, the system initiated containment protocols that isolated affected nodes, triggered additional authentication challenges, and alerted security analysts with contextual insights drawn from generative scenario models. These context-enriched alerts reduced false positives and enabled more precise prioritization of response efforts. Additionally, generative AI models contributed to adaptive risk scoring by evaluating the evolving threat landscape in conjunction with enterprise risk profiles. The result was a dynamic risk assessment capability that aligned cyber defense activities with the organization's operational priorities and risk appetite.

Integrated intelligent enterprise architectures also demonstrated improved organizational learning and adaptation. The feedback loops between generative AI, data-driven decision frameworks, and cyber defense systems facilitated continuous refinement of analytical models and security heuristics. Data collected from decision outcomes and security incidents enriched the training corpus for generative models, enabling them to adjust to shifting conditions and emergent patterns without extensive manual reconfiguration. This adaptive learning cycle accelerated organizational responsiveness to environmental changes, regulatory shifts, and competitive pressures.

Another key result was the enhancement of governance and compliance visibility within the enterprise. As generative AI and data-driven decision frameworks became embedded in operational processes, they generated rich audit trails that documented the data inputs, inferential logic, and decision pathways leading to specific actions. These audit artifacts supported governance activities by making AI decisions transparent, traceable, and verifiable against regulatory requirements. Particularly in highly regulated industries—such as finance, healthcare, and telecommunications—the integration of explainability mechanisms with generative decision outputs helped satisfy external auditors and internal risk committees that AI-informed decisions adhered to compliance standards and ethical guidelines.

Despite these positive outcomes, the transition to intelligent enterprise architectures presented several challenges that were surfaced in the results analysis. One recurring issue was the quality and availability of contextual data needed to maximize generative AI performance. Generative models are sensitive to data diversity and distribution; inadequate representation of edge conditions or minority cases can bias simulations and reduce generalizability. Organizations investing in integrated architectures had to deploy robust data governance mechanisms to standardize data schemas, enforce quality controls, and fill gaps in missing or unstructured information. Another challenge pertained to computational resource demands. Generative AI models, especially those involving deep learning, imposed significant infrastructure requirements for training and inference. Enterprises addressed this by adopting hybrid cloud architectures, GPU-accelerated computing clusters, and on-premises/off-premises balancing strategies to optimize performance and cost.

Furthermore, aligning cyber defense integration with business continuity objectives required careful calibration. An overly aggressive security posture—such as automated network segmentation triggered by minor anomalies—could inadvertently disrupt legitimate operations. The solution involved developing tiered response policies that differentiated between high-confidence threat indicators and low-confidence anomalies, ensuring that automation supported rather

than impeded critical workflows. Organizations also recognized the importance of human oversight in high-impact decisions. While generative AI provided predictive alerts and risk assessments, final decisions on strategic responses often remained the responsibility of multidisciplinary human teams with domain expertise.

Overall, the results confirm that enterprise architectures integrating generative AI, cyber defense, and data-driven decision frameworks can deliver enhanced analytical capabilities, resilient security postures, and rich decision support systems. The synergy between these components fosters an ecosystem where predictive insight, automated defense, and adaptive learning coalesce to create intelligent enterprises capable of thriving in environments characterized by volatility, uncertainty, complexity, and ambiguity. However, achieving these benefits requires a deliberate alignment of technology, governance, organizational processes, and human judgment. Intelligent enterprise architectures are not simply technical constructs but socio-technical systems that depend on coordinated design, implementation, and continuous refinement.

V. CONCLUSION

The research presented reinforces the transformative potential of designing intelligent enterprise architectures that integrate generative AI with cyber defense and data-driven decision frameworks. These integrated systems represent a paradigmatic shift in how enterprises leverage technology to operate securely, adaptively, and strategically. Across multiple dimensions—analytical precision, threat resilience, decision agility, governance transparency, and organizational learning—the evidence demonstrates that generative AI is not merely a predictive augmentation but a foundational catalyst that enables enterprises to anticipate, simulate, and respond to complex, dynamic environments with unprecedented capability.

First and foremost, the integration of generative AI within enterprise analytics frameworks elevates analytical outputs from descriptive and diagnostic analyses to prescriptive and predictive foresight. Traditional analytics often focus on what has occurred; generative AI enables enterprises to generate plausible futures, explore contingencies, and stress test strategies against emergent scenarios that fall outside historical patterns. This foresight becomes particularly critical in contexts where disruption—whether market, operational, or technological—can rapidly alter competitive landscapes. The ability to simulate multiple scenarios with a high degree of contextual awareness supports strategic planners in preparing robust responses rather than brittle plans susceptible to failure under unanticipated conditions.

Equally important is the contribution of generative AI to cyber defense. In an era where cyber threats evolve with remarkable velocity and sophistication, conventional defense mechanisms reliant on static signatures and human-crafted rules are insufficient. By learning patterns of normalcy and devising synthetic representations of potential attack vectors, generative AI heightens detection sensitivity and enables pre-emptive defense postures. The research confirms that such architectures drastically reduce detection latency and improve the accuracy of threat categorization. However, generative AI does not supersede human expertise; instead, it operationalizes domain knowledge into scalable models that augment human analysts' ability to interpret and respond to security events. This human-machine synergy ensures that critical decisions, especially those involving risk tradeoffs or high uncertainty, are informed by both computational insight and expert judgment.

The integration with data-driven decision frameworks also yields profound organizational impacts. Intelligent enterprise architectures align disparate data streams into cohesive analytical narratives that support cross-functional decisions. Generative AI's capacity to process multimodal inputs—structured, unstructured, temporal, and spatial—enables decision frameworks to incorporate rich context, reducing reliance on siloed insights. Executives and operational leaders benefit from unified dashboards and model-generated recommendations that surface opportunities and risks with clear causal linkages. Importantly, these systems produce audit trails and explainability artifacts that not only enhance transparency but also support ethical compliance and governance oversight. In regulated sectors, where decision accountability is paramount, the ability to justify AI-supported decisions to external stakeholders reinforces organizational legitimacy and trust.

The conclusion must also acknowledge that the implementation of these intelligent architectures is not without complexity. Achieving the demonstrated benefits requires thoughtful orchestration of data governance, model lifecycle management, infrastructure scaling, and human talent development. Enterprise leaders must navigate tradeoffs between automation and human control, ensuring that AI-driven processes remain aligned with organizational values, risk

tolerances, and ethical norms. Governance mechanisms must evolve in parallel with technology deployment to maintain compliance, mitigate bias, and ensure equitable outcomes for stakeholders.

Moreover, the research highlights that intelligent enterprise architectures are not static endpoints but continual journeys of refinement. As generative models adapt to new data and cyber threats evolve, the architecture must support iterative learning, recalibration, and integration of emerging analytical techniques. Success in this domain depends on institutionalizing learning cultures that prizes experimentation, feedback loops, and cross-disciplinary collaboration. Organizations that embrace these cultural dimensions alongside technical integration will be better positioned to sustain long-term advantage.

In summary, the research confirms that intelligent enterprise architectures integrating generative AI with cyber defense and data-driven decision frameworks offer transformative potential, yielding enhanced foresight, resilient security, and decision coherence. This integrated approach aligns technology with strategic imperatives, enabling enterprises to navigate complexity with agility and confidence. The future of enterprise competitiveness thus lies in architectures that not only process data but also reason, anticipate, and adapt in partnership with human decision makers.

VI. FUTURE WORK

Future research should focus on several key directions to extend the insights from this study. First, investigating methods to reduce the computational footprint of generative AI models—particularly for real-time enterprise applications—would enhance deployability for organizations with constrained resources. Techniques such as model distillation and federated learning could support scalable implementation without compromising performance.

Second, exploring explainability mechanisms that unify generative AI outputs with human cognitive models will be essential to foster deeper trust and adoption among non-technical stakeholders. Research into user-centric explanation interfaces and narrative-based AI interpretation may bridge gaps between model complexity and organizational comprehension.

Finally, longitudinal studies that examine the long-term impact of intelligent enterprise architectures on organizational agility, culture, and market performance would provide empirical evidence for strategic value beyond short-term analytical gains. This future work will not only advance theoretical understanding but also support practical frameworks for intelligent enterprise evolution.

REFERENCES

1. Bishop, C. M. (2010). *Pattern Recognition and Machine Learning*. Springer.
2. Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. *MIS Quarterly*, 36(4), 1165–1188.
3. Mittal, S. (2025). From attribution to action: Causal incrementality and bandit-based optimization for omnichannel customer acquisition in retail media networks. *International Journal of Research Publications in Engineering, Technology and Management*, 8(6), 13171–13181. <https://doi.org/10.15662/IJRPETM.2025.0806021>
4. Archana, R., & Anand, L. (2025). Residual u-net with Self-Attention based deep convolutional adaptive capsule network for liver cancer segmentation and classification. *Biomedical Signal Processing and Control*, 105, 107665.
5. Sudhan, S. K. H. H., & Kumar, S. S. (2015). An innovative proposal for secure cloud authentication using encrypted biometric authentication scheme. *Indian journal of science and technology*, 8(35), 1-5.
6. Ahmad, S. (2025). The Impact of Structured Validation and Audit Frameworks on the Fairness and Efficiency of AI-Driven Hiring Systems. *International Journal of Research and Applied Innovations*, 8(6), 13015-13026.
7. Vimal Raja, G. (2025). Context-Aware Demand Forecasting in Grocery Retail Using Generative AI: A Multivariate Approach Incorporating Weather, Local Events, and Consumer Behaviour. *International Journal of Innovative Research in Science Engineering and Technology (Ijirset)*, 14(1), 743-746.
8. Lakshmi, A. J., Dasari, R., Chilukuri, M., Tirumani, Y., Praveena, H. D., & Kumar, A. P. (2023, May). Design and Implementation of a Smart Electric Fence Built on Solar with an Automatic Irrigation System. In 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC) (pp. 1553-1558). IEEE.

9. Poornachandar, T., Latha, A., Nisha, K., Revathi, K., & Sathishkumar, V. E. (2025, September). Cloud-Based Extreme Learning Machines for Mining Waste Detoxification Efficiency. In 2025 4th International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 1348-1353). IEEE.
10. Ananth, S., Radha, K., & Raju, S. (2024). Animal Detection In Farms Using OpenCV In Deep Learning. Advances in Science and Technology Research Journal, 18(1), 1.
11. Khan, M. I. (2025). Big Data Driven Cyber Threat Intelligence Framework for US Critical Infrastructure Protection. Asian Journal of Research in Computer Science, 18(12), 42-54.
12. Ferdousi, J., Shokran, M., & Islam, M. S. (2026). Designing Human-AI Collaborative Decision Analytics Frameworks to Enhance Managerial Judgment and Organizational Performance. Journal of Business and Management Studies, 8(1), 01-19.
13. M. R. Rahman, "Lightweight Machine Learning Models for Real-Time Ransomware Detection on Resource-Constrained Devices", *jictra*, vol. 15, no. 1, pp. 17–23, Dec. 2025, doi: 10.51239/jictra.v15i1.348.
14. Mohana, P., Muthuvinayagam, M., Umasankar, P., & Muthumanickam, T. (2022, March). Automation using Artificial intelligence based Natural Language processing. In 2022 6th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1735-1739). IEEE.
15. Sugumar, R. (2024). AI-Driven Cloud Framework for Real-Time Financial Threat Detection in Digital Banking and SAP Environments. International Journal of Technology, Management and Humanities, 10(04), 165-175.
16. Gopinathan, V. R. (2024). AI-Driven Customer Support Automation: A Hybrid Human-Machine Collaboration Model for Real-Time Service Delivery. International Journal of Technology, Management and Humanities, 10(01), 67-83.
17. Christadoss, J., Panda, M. R., Samal, B. V., & Wali, G. (2025). Development of a Multi-Objective Optimisation Framework for Risk-Aware Fractional Investment Using Reinforcement Learning in Retail Finance. *Futurity Proceedings*, 3.
18. Karnam, A. (2025). Rolling Upgrades, Zero Downtime: Modernizing SAP Infrastructure with Intelligent Automation. International Journal of Engineering & Extended Technologies Research, 7(6), 11036–11045. <https://doi.org/10.15662/IJEETR.2025.0706022>
19. Sudhan, S. K. H. H., & Kumar, S. S. (2016). Gallant Use of Cloud by a Novel Framework of Encrypted Biometric Authentication and Multi Level Data Protection. Indian Journal of Science and Technology, 9, 44.
20. Jayaraman, S., Rajendran, S., & P, S. P. (2019). Fuzzy c-means clustering and elliptic curve cryptography using privacy preserving in cloud. International Journal of Business Intelligence and Data Mining, 15(3), 273-287.
21. Poornima, G., & Anand, L. (2025). Medical image fusion model using CT and MRI images based on dual scale weighted fusion based residual attention network with encoder-decoder architecture. Biomedical Signal Processing and Control, 108, 107932.
22. Kusumba, S. (2025). Driving US Enterprise Agility: Unifying Finance, HR, and CRM with an Integrated Analytics Data Warehouse. IPHO-Journal of Advance Research in Science And Engineering, 3(11), 56-63.
23. Navandar, P. (2022). SMART: Security Model Adversarial Risk-based Tool. International Journal of Research and Applied Innovations, 5(2), 6741-6752.
24. Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning*. Springer.
25. Kshetri, N. (2018). 1 Blockchain's roles in meeting key supply chain management objectives. *International Journal of Information Management*, 39, 80–89.
26. Manda, P. (2023). LEVERAGING AI TO IMPROVE PERFORMANCE TUNING IN POST-MIGRATION ORACLE CLOUD ENVIRONMENTS. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 6(3), 8714-8725.
27. Pearl, J. (2009). *Causality: Models, Reasoning, and Inference* (2nd ed.). Cambridge University Press.
28. Rai, A., & Tiwana, A. (2020). Explainable AI: From black box to glass box. *Journal of the Academy of Marketing Science*, 48(1), 137–141.
29. Shmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. *MIS Quarterly*, 35(3), 553–572.
30. Varian, H. R. (2014). Big data: New tricks for econometrics. *Journal of Economic Perspectives*, 28(2), 3–28.
31. Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: Concepts, methodologies, and applications. *ACM Transactions on Intelligent Systems and Technology*, 5(3), Article 38.