International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 7, Issue 6, November-December 2024||

DOI:10.15662/1JRAI.2024.0706028

ETL Testing for Modern Data Engineering: A
Shift-Left SDET Approach

Chiranjeevulu Reddy Kasaram
Independent Researcher, USA
chiran.reddy16@gmail.com

ABSTRACT: The transformation of the quality assurance role into that of the Software Development Engineer in Test
(SDET) has redefined expectations for modern data engineering workflows. In data-driven systems, user interfaces
represent only the surface layer of complex data pipelines, making Extract-Transform-Load (ETL) testing a critical
component of quality assurance. This paper explores Python-powered ETL testing pipelines as a foundation for
automating data validation within the SDET workflow. Emphasizing a shift-left testing philosophy, we propose early
and continuous validation of transformation logic, data models, and full ETL processes to ensure completeness,
consistency, and timeliness of data. By leveraging Python, advanced SQL, and CI/CD integration, SDETs can design
reusable, scalable, and maintainable validation systems that uphold data governance principles and provide sustained
data integrity across analytical and operational contexts.

KEYWORDS: ETL testing, Python, SDET, data validation, automation, data quality

I. THE CRITICAL IMPERATIVE: WHY ETL TESTING IS A NON-NEGOTIABLE PILLAR OF DATA
ENGINEERING

Quality assurance professional profession has gone radically since it is no longer a manual and user interface (UI)-
oriented tester, but it has transformed into a Software Development Engineer in Test (SDET). This is a straightforward
response to the intricacy of data-centric applications in which the conventional Ul is merely the display surface that data
streams that are currently being executed are supported [9]. The current SDET is a quality architect, requiring a mandate
on the entire data flow, and requires the code-first mentality to build self-scalable validation structures [7]. This entails
the need to have the developed skill base capable of concentrating on programming skills particularly Python, advanced
SQL to query data and the extensive understanding of the CI/CD principles that would enable it to integrate the testing
into the development cycle without any difficulties.

One of the most important tasks that the SDET should undertake in this respect is the popularization of the idea behind
the shift-left data flow testing. This implies early validation activity integration into the development cycle as early as
testing of transformation logic, data models individually and integrating them into a full-scale resource consuming ETL
job [1], [9]. It is a much better preventative measure than the classical method of finding out the errors until the very end
of an extensive load of production. Moreover, the quality of the entire process of data should be controlled by the SDET,
not only the extraction of data but also consumption in a dashboard or machine learning model. This only necessitates
the departure of finding that the data is merely loaded to the requirements of high quality, fullness, consistency, and
promptness [1], [8]. Finally, the SDET goal is never to write but to develop reusable, supportable and stable test
automation systems to offer continuous data integrity and one of the pillars of data governance is required and crucial

(71, [8].
IL. WHY PYTHON IS THE UNRIVALLED CHAMPION FOR ETL TESTING

Python’s ascendancy as the premier language for data engineering and ETL testing is not incidental; it is the result of a
powerful combination of simplicity and a meticulously crafted ecosystem of libraries. Its straightforward, readable
syntax lowers the barrier to entry, allowing SDETs and data engineers to rapidly develop and maintain complex test
scripts without wrestling with convoluted code, thereby increasing productivity and reducing time-to-value for testing
initiatives [6]. This readability also enhances collaboration, as test cases are easier for non-specialists to review and
understand, fostering better communication between development, testing, and business analyst teams.

1JRAI©2024 | AnISO 9001:2008 Certified Journal | 11829

http://www.ijrai.com/
mailto:editor@ijrai.com

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 7, Issue 6, November-December 2024||
DOI:10.15662/1JRAIL.2024.0706028

However, Python’s true dominance is cemented by its extensive package library, which provides a specialized tool for
virtually every aspect of the ETL testing pipeline. The panda’s library is arguably the most critical, as its Data Frame
object is perfectly suited for in-memory representation, manipulation, and comparison of tabular data, enabling efficient
validation of large datasets through powerful operations like joins, filters, and aggregations [6]. For orchestrating these
validations, the pytest framework offers a robust, feature-rich environment with fixtures for managing test
setup/teardown (e.g., database connections), parameterization for running tests with multiple data sets, and a clear
reporting structure [4]. For more complex, metadata-driven testing, libraries like Great Expectations allow for the
creation of declarative, reusable assertions about data, effectively documenting and validating data contracts [2].

Finally, Python’s versatility as a “glue” language is invaluable. SDETs can use a single language to connect to diverse
data sources (SQL and NoSQL databases via connectors, cloud storage via SDKs, APIs via requests), generate synthetic
test data with libraries like Faker, and seamlessly integrate their testing pipelines into CI/CD workflows and
orchestration tools like Apache Airflow, which is itself written in Python [2], [5]. This end-to-end capability within one
ecosystem makes Python an unrivalled choice for building comprehensive and automated data validation frameworks.

III. ARCHITECTING A PYTHON-POWERED ETL TESTING PIPELINE: A PRACTICAL FRAMEWORK

The performance of an automated testing strategy is based on the architecture. A robust Python based ETL testing
pipeline would be reusable, modular and would be an ideal fit to the development life cycle. It typically includes several
core components: there is a configuration manager (through config.ini or environment variables) to externalize these
things as database connections, there is a data manager (to create or source data) and there is an orchestration script (e.g.,
a pytest runner) to logical execution [2], [4].

The testing strategy is a powerful, staged strategy, which depicts best software testing practices [10]. The table below is
the most effective structure and gives the maximum coverage of the tests by assigning different types of tests to different
phases of ETL process.

TABLE I. THE ETL TESTING PYRAMID: A PHASED APPROACH TO AUTOMATION
Test Scope Python Objective Execution
Level Tools & Frequency

Technigues
Unit' | Individual | prytest, Validate On every
Comyp | transform | custom business logic | code conumnit
onent | ation functions in isolation
functions
Integr | Full pandas, Verify data On pre-
aticn | source-to- | SOQLAlchemy, | completeness, | production
target prytest accuracy, and | builds
data flow type
consistency
End- | Final pandas, Great | Ensure On
to- output & | Expectations | aggregated production
End buzitess results mest schedule
(E2E) | metrics business
Tequirements

At the bottom of the pyramid is unit testing. In this case, Python functions are coded to replicate discrete transformation
rules e.g. data cleansing or calculated field logic and are tested with pytest with known input and output. This enables a
very quick development and verification of core logic prior to integration [10].

The middle layer of the pyramid is known as integration testing, which confirms the whole ETL process. A standard test
comes in the form of a pandas executing a SQL query on the source system (df source = pd.read sql(...)) and a
corresponding query on the target data warehouse (df target = pd.read_sql(...)). DataFrames are then asserted with each

1JRAI©2024 | AnISO 9001:2008 Certified Journal | 11830

http://www.ijrai.com/
mailto:editor@ijrai.com

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 7, Issue 6, November-December 2024||
DOI:10.15662/1JRAIL.2024.0706028

other, and the count of rows between them should be equal, the data models are supposed to be similar and the data to be
identical using pd.testing.assert frame equal [6].

Lastly, E2E tests ensure that the business outcomes are correct. With a library such as Great Expectations, SDETs may
make declarative assertions on the end result data model, such as checking suitability of ranges of values, presence of
nulls in primary keys, or the accuracy of key performance indicator calculations [2]. This automated, staged system,
which is part of CI/CD, converts manual validation of data to an automated, uninterrupted and trustworthy process.

IV. FROM AUTOMATION TO ORCHESTRATION: INTEGRATING INTO CI/CD AND PRODUCTION

An automated test suite holds limited value if it is executed ad-hoc. The true power of a Python-powered testing pipeline
is realized through its orchestration—its seamless integration into Continuous Integration/Continuous Deployment
(CI/CD) practices and production monitoring workflows. This transition from isolated automation to a fully orchestrated
quality gate is what solidifies the SDET’s role as a cornerstone of modern data governance [7], [8].

CI/CD Integration: The Automated Quality Gate

The first critical integration point is within the CI/CD pipeline, often managed by platforms like GitHub Actions, GitLab
CI, or Jenkins. The goal is to shift-left data testing, catching errors before they propagate. This is achieved by triggering
the test suite automatically upon a pull request (PR) to the ETL code repository. A CI pipeline configuration (e.g., a
.github/workflows/test.yml file for GitHub Actions) defines this process. A simplified example is shown below:

name: ETL Data Validation
on pull_request
jobs:
run-pytest:
runs-on: ubuntu-latest
env:
DB_CONN: S secrets.TEST_DB_CONNECTION_STRING
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@vs
with:
python-version:
- name: Install dependencies
run: pip install -r requirements.txt
- name: Run ETL Integration Tests
run: pytest tests/integration/ -v --htmlsreport.html
- name: Upload Test Report
uses: actions/upload-artifactévd
with:
name: pytest-report
path: report.html]

Code Snippet 1: Example GitHub Actions workflow to run pytest on a pull request.
This automated process provides immediate feedback to developers. If any data validation test fails, the entire PR check
fails, preventing the merge of faulty code and enforcing a quality standard directly within the development workflow [9].

Production Monitoring: The Safety Net

The second integration point is in production. Data pipelines are dynamic; source systems change, and unexpected data
anomalies can occur long after deployment. Therefore, the testing pipeline must also function as a monitoring and
alerting system. This is achieved by scheduling the test suite to run after the production ETL job completes, using
workflow orchestrators like Apache Airflow or Prefect.

An Airflow Directed Acyclic Graph (DAG) can be designed to first run the ETL job and then execute the validation tests

as a downstream task. The success or failure of this “validate data” task determines the overall success of the DAG run
and triggers alerts.

1JRAI©2024 | AnISO 9001:2008 Certified Journal | 11831

http://www.ijrai.com/
mailto:editor@ijrai.com

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 7, Issue 6, November-December 2024||
DOI:10.15662/1JRAIL.2024.0706028

TABLE II. CI/CD vS. PRODUCTION MONITORING ORCHESTRATION

Aspect CI/CD Production
Integration Monitoring
(Shift-Left) (Ongoing)
Primary Prevent bugs from Detect bugs
Goal being merged introduced by
external changes
Trigger Pull Request / ETL Job Completion
Merge (e.g., daily schedule)
Environment | Pre-production / Production (on a
Staging data sample if
necessary)
Test Data Synthetic / Live Production
Sampled Data Data
On Failure Block PR Merge Send Alert to Data
Engineering Team

Alerting and Reporting: Closing the Loop

For production monitoring, robust alerting is non-negotiable. Python’s flexibility allows for easy integration with
communication platforms. Upon a test failure, the pipeline can call a webhook to post a detailed alert to a Slack or
Microsoft Teams channel, often including a link to the generated HTML test report for immediate triaging. A simple
function using the requests library can accomplish this:

import requests
import json

def send_slack_alert(message, report_url):
webhook_url = “"https://hooks.slack.com/services/XXX

payload =
text": f @ ETL Data Quality Alert: (message)",

type section”,
text type”: "mrkdwn”, "text”: f"#ETL Validation Failed:* {message

type": "actions”,
elements” :
type button”,

text type”: "plain_text”, "text”: "View Test Report
url®: report_url

requests.post{webhook_url, data=json.dumps(payload)]|

Code Snippet 2: Python function to send a detailed alert to Slack on validation failure.
This closed-loop process—from automated testing to orchestrated execution and immediate I alerting—ensures that data
quality is continuously verified, making the pipeline a proactive sentinel rather than a reactive tool [7].

V. CHALLENGES AND CONSIDERATIONS

Although the automation of the ETL testing with the help of Python is incredibly beneficial, one cannot underestimate
the fact that the implementation process does not lack the challenges which the organizations can be guided on the
strategic level. One of them is test data management. The issue of the generation of realistic, referentially healthy, and
volumetrically publicly sufficient information is complex. The generation of production data is frequently laden with
security and privacy issues, frequently against regulations such as GDPR, and creation of fake data by algorithms such as
Faker is unlikely to add the challenge of connections and anomalies in actual information in a productive manner [3],
[11]. This will in turn result in passing tests with a well-managed staging environment and breaking in production with
unanticipated complexities of data.

Besides this, there is the problematic performance and scalability. Access facilities such as pandas to Python, are also
limited by memory (RAM). Evaluation of large terabytes of data through loading all datasets into the memory is

1JRAI©2024 | AnISO 9001:2008 Certified Journal | 11832

http://www.ijrai.com/
mailto:editor@ijrai.com

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 7, Issue 6, November-December 2024||
DOI:10.15662/1JRAI.2024.0706028

computationally costly and even not possible [6]. This is through the strategic tools which are used like, use of statistical
sampling, row limiting using query based or incremental validation. Very big data environments can require the SDETs
to use distributed computation engines such as PySpark to then implement validation logic, which again is another
complexity layer to the infrastructure that is to be tested itself [2].

Lastly, the maintenance expense of the test suite as such may become an opportunity cost. The number of test cases and
expected results needs to be constantly updated as the underlying data model and corresponding ETL transformation
logic will change as a result of new business needs or changed source system. Lack of discipline and ownership can
cause the test suites to become dated within a short time, giving false positives and causing a loss of faith in the
developer in the automation which is a common trap in software testing [10]. This needs the dedication of culture to
preservation of test assets with the same seriousness as the code of production such that the testing pipeline is a
consistent conduit.

VI. CONCLUSION

Python ETL testing scheme automation pipelines are indicative of an essential and mandatory change in the modern
SDET process. Given the fact that data has become the blood of any decision-making process in the enterprise, the cost
of the poor quality of data is prohibitive and the manual-based method of validation has become a thing of the past [8].
This essay has argued that the SDET has evolved into the critical manner of having a traditional Ul testing to the one that
is a data validation architect and thus requires a new set of skills which are revolving around programming, automation
and data governance. Python is best suited to this mission as it has the best library ecosystem of libraries including
pandas, pytest and Great Expectations to create scalable, robust and maintainable testing systems [2], [6].

These pipes are being designed as staged and pyramid of testing depending on the unit, integration and end to end testing
and provides complete coverage of data integrity not only in the level of transformation logic, but also in the end
business measurements [1], [10]. More importantly, precisely because of this automation along with all the other CI/CD
and production monitoring schedule-related processes, it is this automation that results in the fact of the reality of the
actual quality of data being more than a manual check response mechanism but an active and continuous process of
guaranteeing [7], [9]. Despite the fact that some issues remain regarding the test data management, performance and
maintenance, they are covered by the must to create viable data systems.

To be more precise, the ETL testing of Python is not only the improvement of the technology, but the necessity of the
business. It also enables SDETs to be the mouthpiece of the idea of data integrity and quality being instilled in the
development cycle directly and a veil of trust established on which all the parties who are consuming data are basing
themselves on. Through such practices, firms can afford to speed up their release cycle, monetize their analytical
expertise in addition to utilizing their information in a safe strategic resource.

REFERENCES

[1] S. Srinivasan, ETL Testing & Data Warehouse Testing: A Complete Guide. Birmingham, UK: Packt Publishing,
2018.

[2] C.S. Adorf, P. M. Dodd, V. Ramasubramani, and S. C. Glotzer, “Simple data and workflow management with the
signac framework,” Computational = Materials Science, vol. 146, pp. 220-229, 2018, doi:
10.1016/j.commatsci.2018.01.035.

[3] D. W. Hodges and K. Schlottmann, “Reporting from the archives: Better archival migration outcomes with Python
and the Google Sheets API,” Code4Lib Journal, no. 46, 2019. [Online]. Available:

[4] J. Morris, C. McCubbin, and R. Page, Hands-On Data Science with the Command Line: Automate Everyday Data
Science Tasks Using Command-Line Tools. Birmingham, UK: Packt Publishing Ltd., 2019.

[5] C. Avramidis, “Development of decision support web application,” M.S. thesis, Dept. Comput. Sci., Univ. Of
Thessaly, Volos, Greece, 2022.

[6] W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Ipython, 2nd ed. Sebastopol,
CA, USA: O’Reilly Media, 2017.

[7] J. Bauer and B. Dinter, “Automated data quality monitoring: a step towards data-driven decision making,” in Proc.
Int. Conf. Information Systems (ICIS), San Francisco, CA, USA, 2018, pp. 1-9.

[8] D. Vesset, Data Integrity: A Guide for Data Governance. Framingham, MA, USA: IDC, 2016.

1JRAI©2024 | AnISO 9001:2008 Certified Journal | 11833

http://www.ijrai.com/
mailto:editor@ijrai.com

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|IVolume 7, Issue 6, November-December 2024||
DOI:10.15662/1JRAIL.2024.0706028

[9] E. Ras and J. Van der Meiden, “Agile data warehouse design: Testing in an agile environment,” in Agile Data

Warehousing, Business Intelligence, and Analytics, Redwood City, CA, USA: 2013.
[10]C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing: A Developer’s Guide to Becoming a

Quality-Assurance Professional. New York, NY, USA: John Wiley & Sons, 2001.
[11]D. L. Olson, Data Quality: The Accuracy of Business Data. New York, NY, USA: McGraw-Hill Education, 2003.

1JRAI©2024 | AnISO 9001:2008 Certified Journal | 11834

http://www.ijrai.com/
mailto:editor@ijrai.com

	I. THE CRITICAL IMPERATIVE: WHY ETL TESTING IS A NON-NEGOTIABLE PILLAR OF DATA ENGINEERING
	II. WHY PYTHON IS THE UNRIVALLED CHAMPION FOR ETL TESTING
	III. ARCHITECTING A PYTHON-POWERED ETL TESTING PIPELINE: A PRACTICAL FRAMEWORK
	IV. FROM AUTOMATION TO ORCHESTRATION: INTEGRATING INTO CI/CD AND PRODUCTION
	CI/CD Integration: The Automated Quality Gate
	Production Monitoring: The Safety Net
	Alerting and Reporting: Closing the Loop

	V. CHALLENGES AND CONSIDERATIONS
	VI. CONCLUSION
	REFERENCES

