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ABSTRACT: Recently, Internet of Things (IoT) usage has increased rapidly, and cybersecurity concerns have also
improved. Cybersecurity attacks are exclusive to the 10T, which has unique limitations and characteristics. Considering
that many attacks and threats are being presented daily against 10T. So, it is significant to recognize these kinds of
attacks and discover solutions to alleviate their risks. The modern approach to cybersecurity comprises the application
of artificial intelligence (Al) to develop complex models for protecting systems and networks, specifically in loT
environments. Cyber attackers have also adapted by leveraging Al technologies, using adversarial Al to execute
advanced cybersecurity threats. This constant evolution of Al-driven threats and defenses necessitates developing more
robust, adaptive, and real-time cybersecurity models to stay ahead of increasingly advanced attacks. This paper presents
an Intelligent Cybersecurity System Using Self-Attention-based

Deep Learning and Metaheuristic Optimization Algorithm (ICSSADL-MHOA). The proposed ICSSADLMHOA model
aims to enhance a robust cybersecurity system in 10T networks. At first, the data normalization stage employs min—max
normalization to ensure consistency, accuracy, and efficiency by organizing data into a standardized format.
Furthermore, the improved tuna swarm optimization (ITSO) model is implemented for the feature selection process to
detect the most relevant features in the data. Besides, the proposed ICSSADL-MHOA model utilizes the bidirectional
long short-term memory with self-attention (BiLSTM-SA) model for the detection and classification method of
cybersecurity. Finally, the parameter selection of the BiLSTM-SA technique is performed by employing the hunger
games search (HGS) technique. Comprehensive studies under the ToN-loT and Edge-1l0T datasets validate the
efficiency of the ICSSADL-MHOA method. The experimental validation of the ICSSADL-MHOA method illustrated a
superior accuracy value of 99.37% over existing techniques.

KEYWORDS: Cybersecurity, loT, Tuna Swarm Optimization, Hyperparameter Selection, Attacks, Data
Normalization

I. INTRODUCTION

Due to rising demand and the growth of innovative network systems of 10Ts. However, its concepts have become more
complex day by day. 10T is demanding to describe because it has improved and evolved since it was primarily
developed. Even the best definition describes it as a connected digital network where devices with unique UIDs can
swap data autonomously without human intervention®. It is often deliberated as a user interface for a centralized or
system location application, usually a smartphone application that sends instructions or data to more than single-edge
loT gadgets. 10T gadgets are susceptible to Internet threats due to several attack vectors®. Hackers might exploit
cybersecurity vulnerabilities in 10T devices, which depend upon the specific part of their target network, leading to
different threats. loT-related cyber security studies are very active right now. Cybersecurity might be significantly
assisted by Al*. Cyber security is implicated in safeguarding software, data, and electronics, together with the processes
by which methods are acquired®. Generally, security intentions include privacy regarding information adequately
disclosed to unauthorized gadgets or people to be destroyed or modified. Consequently, owing to limitless loT-based
connected gadgets, society is also becoming gradually susceptible to cyberthreats like denial-of-service (DoS) threats
by insiders and hackers®. Technology is progressively more important in everyday existence, which means
cybersecurity and cybercrime devices progress simultaneously through the whole manufacturing area, which requires
investing in cybersecurity countermeasures. In contrast, innovative technologies have been developed for loT
cybersecurity management. Additionally, cyber-threats on smart grids, as primary structural elements, are mainly
susceptible and bear more costs, and they rigorously affect the safety of governments and citizens’. There is an
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increasing interest in cyber security and the absence of effectual countermeasures, for example, cyber security experts.
Figure 1 signifies the common architecture of cybersecurity in 10T devices.

Because of their better performance in a range of prediction-based domains, in recent times, investigators have aimed at
machine learning (ML) and deep learning (DL) models. Using Al models like DL and ML methodology might provide
effective approaches to data usage to identify and predict possible cybersecurity attacks. DL approaches recognize
cyber threats that are increasingly popular more quickly than preceding models that allow more effective mitigation®.
DL is a subdivision of Al that focuses on handling and calculating machine applications, which can be complicated,
non-linear designs, and then employing those designs to make predictions. In the cybersecurity world, DL techniques
have become gradually popular devices, rapidly vital to effective defence approaches against harmful attacks. Since loT
gadgets have become more connected, the possibility of hacks has improved. The rapid expansion of 10T devices has
significantly enhanced the complexity of cybersecurity challenges, creating new vulnerabilities that cybercriminals
exploit’. As 10T systems become more integrated into everyday life, ensuring their security is significant to prevent
unauthorized access and malicious attacks. The interconnected behaviour of these devices makes them a prime target
for cyber threats, necessitating advanced security measures. Conventional methods are often insufficient, highlighting
the need for more innovative solutions that address these growing risks. Leveraging artificial intelligence and advanced
algorithms is becoming crucial to improve the protection and resilience of 10T networks®®.

This paper presents an Intelligent Cybersecurity System Using Self-Attention-based Deep Learning and Metaheuristic
Optimization Algorithm (ICSSADL-MHOA). The proposed ICSSADL-MHOA model aims to enhance a robust
cybersecurity system in 10T networks. At first, the data normalization stage employs min— max normalization to ensure
consistency, accuracy, and efficiency by organizing data into a standardized format. Furthermore, the improved tuna
swarm optimization (ITSO) model is implemented for the feature selection process to detect the most relevant features
in the data. Besides, the proposed ICSSADL-MHOA model utilizes the bidirectional long short-term memory with self-
attention (BiLSTM-SA) model for the detection and classification method of cybersecurity. Finally, the parameter
selection of the BILSTM-SA technique is performed by employing the hunger games search (HGS) technique.
Comprehensive studies under the ToNIoT and Edge-lloT datasets validate the efficiency of the ICSSADL-MHOA
method. The key contribution of the ICSSADL-MHOA method is listed below.
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Fig. 1: General structure of cybersecurity in 10T networks.

1JRAI©2025 | An 1SO 9001:2008 Certified Journal | 13054




International Journal of Research and Applied Innovations (lJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|[Volume 8, Issue 3, May-June 2025||

DOI:10.15662/1JRAI.2025.0803010

« The ICSSADL-MHOA model utilizes min—-max normalization to scale features within a consistent range,
improving input uniformity. This approach enhances the stability of the model and ensures improved performance by
preventing the dominance of larger values. By normalizing the data, the model effectively handles varying feature
scales, resulting in more accurate results.

+ The ICSSADL-MHOA method employs the ITSO approach for feature selection, detecting the most important
features for the task. This methodology improves classification accuracy by mitigating irrelevant features, allowing the
model to concentrate on the most impactful data. ITSO assists in achieving optimal feature subsets, improving the
overall efficiency of the model.

« The ICSSADL-MHOA approach utilizes the BiLSTM model incorporated with SA to capture past and future
context in data sequences. Concentrating on relevant patterns in the data significantly enhances the model’s capability
to detect and classify cybersecurity threats. The model improves its predictive accuracy and threat detection robustness
by integrating temporal and contextual data.

« The ICSSADL-MHOA methodology employs the HGS approach to optimize the selection of model parameters,
improving its capability to converge efficiently. By fine-tuning parameters, the technique enhances the overall
performance of the model. This approach confirms that the model reaches optimal solutions, improving accuracy and
computational efficiency.

« The ICSSADL-MHOA method integrates ITSO for feature selection, BiLSTM-SA for detection and classification,
and HGS for parameter optimization, giving a comprehensive and efficient solution. This multi-algorithmic approach
improves the accuracy and robustness of the model in cybersecurity tasks. The novelty is in the seamless integration of
optimization, DL, and feature selection techniques, creating a highly effective framework tailored for loT
environments. This integration confirms superior threat detection and resource optimization in complex cybersecurity
scenarios.

The article is structured as follows: Sect. “Literature Survey” presents the literature review, Sect. “Materials and
Methods” outlines the proposed method, Sect. “Experimental Validation and Discussion” details the results evaluation,
and Sect. “Conclusion” concludes the study.

Il. LITERATURE SURVEY

Imtiaz et al.**developed X10T, an innovative XloT threat recognition method to address these challenges. Exploiting
sophisticated DL approaches, particularly Convolutional Neural Network (CNN), XI1oT examines spectrogram images
changed to 10T system traffic information to identify subtle and complex threat patterns. Unlike conventional methods,
XloT highlights interpretability by incorporating CNNs, Explainable Al (XAI) methods, allowing cyber security
analysts to trust and understand its forecasts. Additionally, these technique structures utilize the lower-latency, higher-
speed optical network features. In*?, a DL-based structure is developed with multiple optimizations for automatically
classifying and detecting cyber threats. These optimizations contain hyper-parameter tuning, feature engineering, and
reduction of dimensions. Sattarpour et al.** developed an innovative anomaly-based IDS exploiting DL models, mainly
aimed at the Bidirectional Encoder Representations from Transformers (BERT) model. BERT’s structure allows it to
implement lesser cost evaluations and recognitions than other advanced models, making it appropriate for resource-
constrained 10T settings. The developed structure, EBIDS, connects the ability of BERT to improve intrusion detection
(ID) at the network or loT systems. Morshedi et al.* developed an innovative 10T network ID (NID) method,
exploiting DL models and pristine data. The aim is to give a more efficient model than the preceding models. The
developed DL technique integrates LSTM structure and densely transition layers, intending to take spatial or temporal
dependency in the data. Ragab et al.”® intend a Next-Generation Cybersecurity Attack Detection employing an
ensemble DL model (NGCAD-EDLM) methodology in 10T settings. Moreover, an ensemble DL of dual models, such
as deep belief network (DBN) and CNN approaches, are applied for classification. Furthermore, the DL model’s hyper-
parameter choice is achieved using the lotus effect optimizer algorithm (LEOA) approach. Alsoufi et al.*® enhance and
design a new anomaly-based ID system (AIDS) for 10T systems. Primarily, an SAE is utilized to minimize the higher
dimension and acquire substantial data representation by determining the rebuilt error. Afterwards, the CNN model was
used to generate a dual classification method. Al-Neami et al.*’developed an innovative method to enlarge the Field-
Programmable Gate Array (FPGA) to enlarge a higher-performance IDS. The presented method incorporates advanced
models containing Extreme Gradient Boosting (XGBoost), Hybrid DL (HDL) model, and Meta Ensemble Learning
(MEL) that relate LSTM methods for temporal investigation and CNN for extracting features. This synergistic method
substantially decreases detection latency and increases the threat recognition precision. Wang, Dai, and Yang'®
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developed a NID model based on DL. Also, a Conditional Tabular Generative Adversarial Network (CTGAN)
generates synthetic data for the minority class.

Generative Adversarial Network (SAPGAN) with Namib Beetle Optimization Algorithm (NBOA). It integrates data
pre-processing with APPDRC, feature selection via WSOA, and intrusion classification for diverse attacks. NBOA
optimizes SAPGAN’s parameters for improved attack classification accuracy. Tewari and Gupta® analyze and address
the security challenges in 10T across its three layers, namely perception, transportation, and application, exploring
cross-layer integration issues and comparing them with conventional network security problems. Aboalela et
al.”lintroduce the Harnessing Feature Pruning with Optimal DL DDoS Cyberattack Detection (HFPODL-DDoSCD)
approach for effectual DDoS attack detection in 10T environments. It uses Z-score normalization, Siberian Tiger
Optimization (STO) for feature selection, and an SA-BiTCN-BiGRU model for attack detection. Parameter tuning is
performed using the Avrtificial Protozoa Optimizer (APO) to optimize performance. Adat and Gupta? analyze the
security threats in 10T, provide a taxonomy of security issues and defence mechanisms, and discuss future research
directions to address existing gaps and improve loT security. Santhanamari et al.**propose a robust security framework
using the Cosine CNN (CCNN) technique for attack detection, improving feature extraction with cosine similarity. The
Exponential Distribution Optimizer (EDO) optimizes CCNN, balancing exploration and exploitation for optimal
performance. Zhao, Li, and Li** propose a secure authentication scheme incorporating semantic LSTM and blockchain
(BC) to improve authentication, access control, and security in loT applications while reducing computational
overhead. Wang et al.”® propose a deep residual SConv1D-Attention model. The method utilizes binary Particle Swarm
Optimization (bPSO) for feature selection, a novel SConv1D-Attention module for effectual information integration,
and a robust loss function for addressing data imbalance by accentuating minority classes. Reka et al.”® present a
Centrality Coati Optimization Algorithm (COA)-based Cluster Gradient for multi-attack intrusion identification in
MANETSs. It utilizes Dual Network Centrality for cluster head selection and the COA for compact clustering. The
Multi-head Self-Attention based Gated Graph Convolutional Network (MSA-GCNN) detects various attacks.
Mohamed et al.” introduced a probabilistic composite model for zero-day exploit detection. It features Adaptive
WavePCA-Autoencoder (AWPA) for denoising and dimensionality reduction (DR), Meta-Attention Transformer
Autoencoder (MATA) for improved feature extraction, Genetic Mongoose-Chameleon Optimization (GMCO) for
efficient feature selection, and Adaptive Hybrid Exploit Detection Network (AHEDNet) for dynamic ensemble
adaptation, achieving high accuracy and low false positives.

Ashwini and Nagasundara®® propose the Enhanced Dual Vision Transformer (EDVT) integrated with the Mantis Search
Split Attention Network (MSSAN) models for ransomware detection and classification. It utilizes the log-sinh with
Adaptive Box-Cox Transformation (log-sinhABT) for data pre-processing and the Hybrid Termite Alate City Council’s
Evolution Optimization (HTCEO) for efficient feature selection. Zareh Farkhady et al.?® present a three-dimensional
DL (3DLBS) approach for attack detection, transforming 1D data into 3D using shape, fill, and permute techniques.
The model also utilizes CNN and LSTM branches for detection and uses binary chimp optimization (BCHO) for
feature selection, improving accuracy and speed. Perumal et al.*°propose the Enhanced Metaheuristics with DL Model
for BC Assisted Cybersecurity Solution (EMDLM-BCCS) technique. It uses data pre-processing, extreme learning
machine (ELM) for attack detection, and elite-oppositional grasshopper optimization (EGOA) to enhance ELM
performance. Orman® proposes an IDS framework integrating Multi-layer Perceptron (MLP), ML, DL, Random Forest
(RF), and hybrid models. Kocherla et al.*’introduce the DLAD model, a bio-inspired metaheuristic for anomaly
detection in IloT.

The technique also utilizes the Improved Crow Search Algorithm (ICSA) method for feature selection, Stacked
Recurrent Neural Networks (SRNN) and Harris Hawks Optimizer (HHO) techniques for classification and parameter
tuning. Algahtany, Shaikh, and Algazzaz**introduce an IDS using Enhanced Grey Wolf Optimization (EGWO)
methodology for feature selection to improve reliability and computational efficiency in 10T networks.
Babitha*develops a quantum-inspired BC-assisted cybersecurity model for 10T, utilizing the Fitness-based Jellyfish
Chameleon Swarm Algorithm (FJCSA) technique for key optimization and Adaptive Attention-based LSTM with
Adaboost (AALSTM-Ab) model for ID. Anu Velavan and Sureshkumar® propose a Double Fuzzy Clustering-Driven
Context Neural Network for ID in Cloud Computing (DFCCNN-BWOA-IDC) model for ID in cloud computing. The
method also employs Sequential pre-processing for data cleaning, Recursive Feature Elimination (RFE) for feature
selection, and the Beluga Whale Optimization (BWO) approach to optimize DFCCNN parameters for accurate attack
detection. Lakicevic et al.*propose a phishing email detection methodology by employing an artificial neural networks
(ANN) model with soft attention and BERT encoders optimized by a modified crayfish optimization algorithm (COA)
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method to improve classification accuracy. Sayeed, Ahmed, and Swamy®present a multimodal biometric system
utilizing palm and knuckle vein recognition. The technique also employs contrast enhancement for pre-processing,
GLCM and DWT for feature extraction, Chimp Optimization Algorithm (ChOA) technique for feature selection, and a
Deep Neural Network (DNN) model for classification. Althobaiti and Escorcia-Gutierrez®® introduce the weighted salp
swarm algorithm with DL-based cyber-threat detection and classification (WSSADL-CTDC) technique for cyber-threat
detection, incorporating a weighted salp swarm algorithm, DL, and min—-max normalization. The method utilizes the
shuffled frog leap algorithm (SFLA) for feature selection and a hybrid convolutional autoencoder (CAE) model with
WSSA-based hyperparameter tuning for improved performance. Table 1 summarizes the existing studies on Al-based
cybersecurity systems.

Despite the significant improvements in 10T security solutions, various limitations remain. Many existing methods
depend heavily on specific optimization algorithms or models that may not generalize well across diverse loT
environments, such as XloT, EBIDS, SAPGAN, etc. The reliance on high computational resources in specific
approaches limits their scalability for resource-constrained 10T devices. Additionally, various methodologies suffer
from challenges in feature selection and the handling of imbalanced data, such as HFPODL-DDoSCD and SConv1D-
Attention, which affect their accuracy in detecting minority class threats. Furthermore, most current models do not
sufficiently address cross-layer security issues in 10T, leaving gaps in comprehensive protection strategies. Lastly, there
is a requirement for more efficient and low-latency techniques to address real-time ID in 10T systems, as highlighted by
the proposed methods in several studies like IDS-SAPGAN and EDVT. A significant research gap is the requirement
for more dynamic and context-aware security mechanisms that adapt to the evolving nature of 10T environments and
growing threats.

I11. MATERIALS AND METHODS
This paper presents a novel ICSSADL-MHOA technique. The proposed ICSSADL-MHOA model aims to enhance a

robust cybersecurity system in loT networks. It involves various processes, such as data normalization, DR,
classification, and parameter tuning. Figure 2 signifies the complete work procedure of the ICSSADL-MHOA model.

Ref.No | Objective Method Dataset Measures
To develop XloT, an explainable 10T attack KDD CUP99, Accuracy

11 detection model using DL for enhanced | CNNs, XAl UNSW NB15, Interpreta’bility
cybersecurity in 10T networks Bot-l1oT

12 To propose a DL-based framework, IIDNet,|CNN, DR, Feature| UNSW-NB15 |Precision, Recall, F1-
for efficient cyberattack detection and|Engineering Score, Accuracy
classification in 10T environments
To propose EBIDS utilizing BERT for Edge-IloT, Detection Accuracy,
efficient ID in resourceconstrained 10T |BERT, Anomaly | CICDos 2017 | Computational

13 : . .
environments Detection Overhead, Realtime

Performance

14 To propose a DL-based IDS for 10T networks | LSTM, Dense Layers, | CICIDS2017 | Accuracy, Loss

that effectively detects cyber threats Temporal &  Spatial Metrics, Robustness to
Dependencies Noise

15 To design a cybersecurity attack detection|Ensemble DL, Honey-| TON-loT Accuracy,  Precision,

system for 11oT using an ensemble DL model | Badger Algorithm, Recall, Flscore, MCC
LEOA

16 To design and enhance an AIDS for 10T |SAE, CNN Bot-l1oT Accuracy,  Precision,

networks Recall, F1Score, FPR,
TPR

To develop a high-performance FPGA-based NSL-KDD, Detection Rate, False
IDS for real-time communication security 10TID20, Positive Rate, Real-

17 MEL, XGBoost, HDL |CICIDS2017, |time Operation

UNSW
NB15

To enhance NID accuracy in 10T environments | DL, CTGAN, Spatial | UNSW-NB15, | Classification

18 using DL and synthetic data generation and Temporal Feature|CIC-IDS2018, |Accuracy, MultiClass
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Extraction CICIOT2023 | ID, Data Imbalance
Handling
19 To enhance ID accuracy in WSNs using|IDS-SAPGAN-NBOA- |WSN-DS Accuracy,  Precision,
SAPGAN optimized by WSN Sensitivity
NBOA
20 To analyze and address security challenges in | Layered Analysis, Coss- | Benchmark Security Issues,
IoT across diverse layers Layer Integration Dataset Solutions Comparison
21 To detect DDoS attacks efficiently in loT|HFPODL-DDoSCD, Standard Accuracy,  Precision,
environments using DL SA-BIiTCNBIGRU, Dataset Recall, F-score, MCC
STO, APO
22 To discuss 10T security challenges, defences, | Taxonomy of Security | NA NA
and future research directions Challenges and Defense
Mechanisms
23 Enhance 5G network security with a CCNN|CCNN, EDO Benchmark Accuracy, Robustness,
and EDO Dataset Scalability
24 To enhance authentication and access control | Semantic LSTM with | Standard Computational
in 10T applications using semantic LSTM and | BC Dataset Overhead,
BC Scalability, Information
Security
To enhance zero-day exploit detection with a | AWPA-Autoencoder, Accuracy,  Precision,
probabilistic composite model for improved | MATA, GMCO, Recall, )
accuracy, time, and adaptability AHEDNet Fl-score, R° score,
25 UGRansome MCC, Cohen’s
Kappa, and Jaccard
score
26 To develop a multi-attack IDS for MANETs | Centrality COA, MSA-|NS-2 Network | Accuracy,  Precision,
with optimized node mobility and energy | GCNN Simulator Recall, ROC
consumption
27 To improve 1loT anomaly detection accuracy | SConv1D-Attention, CICDDo0S2019,| ACC, DR, FPR,
and efficiency with a deep residual SConvlD-|bPSO NSL-KDD, X-|Precision, F1Score
Attention model IloTID
28 To detect and classify ransomware threats | EDVT, MSSAN, | Benchmark Accuracy,  F1-Score,
using an EDVT model HTCEO Dataset Recall,
Detection Rate, MCC,
Precision
29 To improve ID accuracy and speed in 10T [3DLBS, CNN, LSTM,|ToN-IoT, Accuracy, Feature
networks using a 3D DL approach BCHO UNSWNB15 |Reduction
30 To develop a BC-assisted cybersecurity| EMDLM-BCCS, ELM,|BoT-loT Detection  Accuracy,
solution for DDoS attack detection in 10T EGOA, BC Performance
Improvement
31 To enhance cybersecurity in 10T by utilizing | MLP, CNN, RF, Hybrid | WUSTL-IloT- |F1 Score, Accuracy,
advanced IDS models for  detecting | DL 2021 Recall, and Precision
cyberthreats
32 For efficient anomaly detection and|DLAD, ICSA, SRNN, | NSL-KDD Detection ~ Accuracy,
classification in 10T using DL techniques HHO Feature
Subset, Classification
Performance
33 To develop an efficient IDS for 10T using EGWO for FS, RF|NF-ToN-loT |Accuracy, Feature
optimized feature selection Classification Selection, Convergence
34 To develop a quantum-inspired BC-assisted | FICSA for Key | Standard Accuracy, Precision
cybersecurity model for loT Optimization, Dataset
AALSTM-ADb for ID
35 To propose DFCCNN-BWOA-IDC for ID in| DFCCNN with BWOA | DARPA Accuracy
cloud computing
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36 To develop an optimized ANN model for| ANN with Soft | Benchmark Accuracy
phishing email detection using BERT and |Attention, BERT | Dataset
COA Encoders, and COA
37 To develop a multimodal biometric | Contrast-Enhancement, | Benchmark Accuracy, Sensitivity,
recognition system for secure authentication| GLCM, DWT, ChOA, |Dataset Specificity
using palm and knuckle veins DNN
38 To develop a robust network security system | WSSA, SFLA, CAE N-BaloT Accuracy,  Precision,

for cyber threat detection using DL and
metaheuristics

Recall, F-score, MCC

Table 1. Summary of Al-driven cybersecurity systems for 10T using DL and metaheuristic algorithms.

Data normalization: min—-max normalization
At first, the data normalization stage employs min—max normalization to ensure consistency, accuracy, and efficiency

by organizing data into a standardized forma

t39

. This model is chosen for this model because it effectually scales the

data to a consistent range, usually between 0 and 1, which improves the convergence speed and performance of ML
models. This method is specifically advantageous when dealing with datasets with varying magnitudes across features,
as it ensures that no single feature dominates due to its scale. Unlike other
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techniques, such as Z-score normalization, which assumes data is usually distributed, min—-max normalization works
well even for non-linear data distributions. It’s also simple to implement and computationally efficient. Furthermore,
this technique preserves the relationships between data points, making it appropriate for optimization-based models like
the one in this framework. Maintaining consistency in feature scaling makes the model less prone to bias from outliers,
resulting in more accurate results in classification and prediction tasks.

Normalization is significant in carrying out input data onto magnitude alterations of ML and DL techniques, which are
complex to magnitude alterations. To attain that, Min-Max normalization is used to regularize the features in the
interval of [0,1]. It is mathematically expressed below:

X = maxB(X—)min— min(X)(X)

Here, B denotes a value of the original data; min(X) and Max(X) represent the minimum and maximum values,
respectively; z means a significant normalization to prevent certain features from leading others owing to their measure.

DR: ITSO model

Next, the ITSO method is implemented for the feature selection process to detect the most relevant features in the
data®®. This model is chosen because it can effectively explore and exploit the search space, detecting the most pertinent
features while avoiding redundant or irrelevant ones. Unlike conventional feature selection methods, ITSO replicates
tuna’s foraging behavior, allowing it to navigate complex, high-dimensional data spaces effectively. This swarm-based
algorithm balances global exploration and local exploitation, making it specifically effective for massive datasets. The
adaptive nature of the ITSO model ensures that it converges to optimal or near-optimal solutions without getting
trapped in local minima, a common issue with other methods like greedy algorithms or filter-based techniques.
Moreover, ITSO doesn’t require prior knowledge of feature correlations, making it more versatile across diverse
datasets. Its integration with ML techniques significantly improves accuracy by mitigating dimensionality and focusing
on the most impactful features. Figure 3 illustrates the steps involved in the ITSO model.

The TSO model is a bio-inspired meta-heuristic model that originated from the tuna fish’s foraging behavior. The
foraging model consisted of dual phases in-depth, as demonstrated. The first model is spiral foraging, while tuna
utilizes a spiral that forms throughout the search. This model permits them to flock their prey into less deep waters,
making it easy to achieve. By accepting this spiral approach, tuna successfully enclose their prey and improve their
probabilities of an effective search. The next model, parabolic foraging, includes all tunas following along, making a
parabolic design to surround its prey successfully. By imitating these strategies, the TSO model improves its optimizer
procedures. The mathematical model of these behaviors is described below:

Initialization

Like other bio-inspired meta-heuristic models, TSO initiates the optimization procedure by arbitrarily generating
primary populations uniformly distributed through the searching region utilizing Eq. (2).

Xi"™ = rand.(ub — Ib) + Ib,i = 1,2NP
whereas xX™; denotes i" individual; ub and Ib represent the upper and lower limits, respectively; NP characterizes the
tuna population counts, and the rand refers to uniformly distributed arbitrary vectors with values ranging between
(0-1).

Spiral foraging

When encountered with predators, smaller breeding fishlike herring and sardines exhibit dynamic behavior, constantly
adjusting their swimming direction to evade threats. In contrast, tuna schools use a tightly looped spiral formation to
pursue their prey. While most fish may lack robust orientation skills, they collaborate with more adept swimmers,
forming a cohesive, unified hunting force. Furthermore, tuna schools share information with all members following the
lead fish, enabling effective communication and coordinated movements.
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Stepl ——| Start

Step 2 - Initialize the Parameters of ITSA

Step3 ——>1 Compute the Fitness of cach Tunicate

Step 4 . Insert the Parameters

StepS ——1 Update each Position of Tunicate Swarm

Step6 ——> Compute the Fitness of each Tunicate then the Best one is Exposed

Step7 —> Update the Position and Fitness Function of each Tunicate

Step 8 — Check the Boundary of the Updated Tunicates

Step9 ——> Return the Best Optimal Solution

Step 10 ——>  Stop

Fig. 3: Steps involved in the ITSO method.

The foraging behavior also comprises a concept where if a group member fails to find food, the rest do not blindly
follow. Instead, a random reference point within the search space is introduced to guide the spiral search.

This encourages broader exploration and improves the group’s global search capability.

The updated model for the group members’ movement is as follows:
X = al. X +B X +a2X,i=1
t+1 al.Xbestt +besttff. Xbestt —besttXit +ita2. Xit—1,iit= 2,3,..NP

This model facilitates global exploration, enhancing the overall search efficiency by diversifying the strategy of the
group
1=a*®-aq).
02=(1-a)— (1 - a)max
B = e .cos(2zb) 1= e3.cos(((tmax + 71) — 1))

The equations describe an optimization process where the position of everyone, X;"**, is updated based on the best-
known solution, X', and the previous position of an individual. The constants a1 and a2 control the extent to which
individuals depend on the optimal solution and their prior positions during the search. The parameter 8, computed
utilizing a random factor b, introduces the agent’s movement variability. , defined as a dynamic spiral factor, improves
global exploration. The variables t and t...x represent the current and maximum iteration counts. The random number b
is uniformly distributed between 0 and 1, guiding the exploration— exploitation balance in the optimization process.
These dynamics ensure that the group maintains an efficient and diverse search strategy.

Parabolic foraging

In addition to the spiral feeding form, tunas participate in cooperative feeding by accepting a parabolic pattern. In this
design, they utilize reference points that are usually the position of their food. In addition, tunas dynamically look for
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food in their direct environments. These double-feeding models are implemented together, with an equivalent presumed
probability of 50%. The mathematic representation which designates this phenomenon is defined as shown:

Classification process: BiLSTM-SA

Besides, the proposed ICSSADL-MHOA model utilizes the BILSTM-SA technique for the classification method of
cybersecurity*. This model is chosen because it can capture both past and future dependencies in sequential data. The
bidirectional nature of BiLSTM allows the model to access context from both directions, enhancing its capability to
comprehend temporal relationships and patterns that may exist in the data. When integrated with SA, the model can
concentrate on the most relevant parts of the input sequence, allowing it to emphasize crucial features while
disregarding irrelevant ones. This makes it highly effective for complex, dynamic datasets like those encountered in
cybersecurity. Unlike conventional models that may face difficulty with long-range dependencies, BiLSTM-SA
outperforms learning from sequences of varying lengths. Furthermore, integrating LSTM and attention mechanisms
improves its robustness, enabling it to perform better in detection and classification tasks than simpler models like
conventional feedforward neural networks or shallow LSTMs. Figure 4 depicts the infrastructure of BiLSTM-SA.

The networks of the LSTM technique control the information flow over gating mechanisms, allowing them to read,
retain, and remove information. These networks are effectual in taking long-term dependences and, partially, easing the
tasks of gradient explosion and vanishing that recurrent neural networks (RNNs) might face when handling long
successive data. It has numerous memory cells, and each one has anf; forget gate, i s input gate, and 0, output gate:

=0 (W [h-1.x] + by

it=0 (Wi [h-1,x] + by)
0r=0 (Wo- [h-1,x] + bo)

In Eg. (12), o is an sigmoid activation function; W and b signify the weight matrix and bias, respectively; h,_1
represents the preceding moment’s hidden layer (HL); X, is a present input.

The input gate defines what present input data must be kept in the memory cell. The forget gate mainly defines how
many preceding memories must be left out. The memory cell concludes which data wants to be removed and must be
remembered for the following step per the verdicts created by both input and forget

Output Layer : Softmax 3

Concat Layer Concatenated Feature Vectors

Self-Attention
Layer

! ] ! 1

LSTM <«—  LSTM [ LSTM [ @0 — LSTM
BiLSTM Layer
LST™M —> LST™M —> LST™M F—F e s

,.......I ....... . presscccmcsnnnnn . precsccshecccnnn preccscckhecccnan \

Input Words |  Input | ; : Input 2: i : lnpul 3 o oo : lnput n: i

Fig. 4: Structure of BILSTM-SA approach.
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gates. The gate of output manages a quantity of data, which is distributed from the memory cell to HL. Then, it is
employed as an output and distributed to the following layer. The final output value has been computed by enlarging
the output gate and outcomes by the memory cell. On the other hand, LSTM can only deal with data in a one-way
method, generally from the start to the end of the series. To overwhelm this restraint, the BiLSTM technique employs
dual dissimilar layers of LSTM at every time step: one handles the sequence in the direction forward (from start to
finish), and other handles it backwards (from finish to start).

The main aim of BILSTM is to take bidirectional dependencies by uniting outputs from both directions. This
bidirectional model permits the method to incorporate context data by seizing intricate dependencies in sequences.

SA is commonly employed in CV and NLP methodologies to capture links within sequences. The main goal is to
permit the method for handling inputs at every step by reflecting local district data and focusing on other fragments of
similar input series. This flexibility allows the process to seize global dependencies among basics by spreading.
Furthermore, SA provides the benefit of sequential handling instead of handling simultaneously. This method can alter
the attention weights across humerous time-steps by providing more concentration to significant steps.

Initially, inputs are changed into 3 vectors such as key (K), query (Q), and value (V ). Then, the resemblance was
computed utilizing the dot product among Q and K, followed by standardization of the similarity scores for getting
attention weight. Then, they are employed in the value vectors, and the resultant output is weighted completely:

Q = XWg,K = XW,,V = XW,

Here, W,, Wy, and W, denote the weight matrices. The dot product of K and Q was employed for calculating their
resemblance:
Attention (Q,K,V ) = softmax(¥N-_")V  (16)

In the equation mentioned above, d, denotes the key dimension employed for measuring the dot product to evade the
problem of gradient explosions or vanishing. S oftmax regularizes the resemblance scores for getting attention weights
and next attains a weighted synopsis on vector V to attain the last output:

Output = Attention (Q,K,V)

Parameter optimizer: HGS model

Finally, the parameter selection of the BiLSTM-SA is executed using the HGS method*. This method is chosen
because it can optimize complex, high-dimensional search spaces. Unlike conventional optimization techniques, such
as grid or random search, HGS is inspired by natural selection processes, which enables it to balance exploration and
exploitation more effectively. This method adapts to dynamic environments, making it ideal for optimizing the
parameters of DL methods such as BiLSTM-SA. HGS can avert local minima, a common challenge in parameter
tuning, by integrating diverse strategies that improve global exploration.

Additionally, HGS can handle large search spaces with a reduced computational cost compared to exhaustive search
methods. Its robustness and capability to fine-tune hyperparameters make it specifically appropriate for enhancing the
performance of complex models like BiLSTM-SA, ultimately improving the classification accuracy and efficiency of
the cybersecurity system. Figure 5 specifies the steps involved in the HGS technique.

The HGS is the recent and novel population-based meta-heuristic method, which imitates the natural insight of animals
to look for food. Hunger has been the primary inspiration for designing a competitive and computationally efficient
model. The model mimics selection, competition, and adaptive procedures existing naturally, along with imaginary
games (Hunger Games). In such games, individuals (agents) challenge survival or resources in challenging
surroundings. During the optimization context, these individuals are considered promising solutions to problems, and
the surroundings are the region, while the difficulties are to be investigated for solutions. The model passes across the
selection, adaptation, and competition methods, which assist in making the optimal solution(s) to the problem. This
segment describes the mathematical representation of the HGS method. The model depends on dual key elements, the
HungerRule and the ApproachRule, to mimic adaptive decision-making strategies and natural hunger-driven behaviors.
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Approaching food

Naturally, animals often cooperate in looking for food, whereas in other cases, they select to hunt autonomously.
Animal searching models stimulate the mathematic equation in Eq. (18). They characterize three dissimilar models in
which animals transfer, imitating their behaviour once they approach a food source. These designs are essential to the
HGS approach, which imitates individual foraging or cooperative behaviour between animals.

——x(t+ 1) = Il =W— - >=Xbb(1 ++ —>—Rrandn- —W—22 -(1))—>—Xbb, — ——X (1), ifrifr111 >< II,r22 > E
(18) ——X (1)

~

Step 1 P Start

Step 2 P»{ Identify the Specific Objectives

Step 3 P Evaluate Starting Resources, Strengths and Weaknesses

Step 4 P Collect Information on the Environment and Competitors

Step 5 }—) Strategy Selection (Aggressive, Defensive, Stealth)

Step 6 P Execute Strategy

Step 7 P Evaluate the Outcomes

L

Step 8 - Continuously Loop through Steps to Adapt to New Situations

Step 9 P Conclude the Optimization Process Based on Final Outcome

Step 10 » Stop

Fig. 5: Steps involved in the HGS methodology.

hunting ends after the individual is most starving, using R helping as a controller to decrease the range of activity to 0
slowly. The subtraction or addition of the range of activity, subjective by —W—1 - ——Xb, imitates how an individual,
directed among their peers to food resources, restarts hunting at the present position after food is located. Now, —W—
characterizes the difference in precisely locating the real position.

Based on the mathematical expression in Eq. (19), E assists as variation controls for each position.
E = sech(|F (i) — BF])

For all individuals i, whereas i range between (1-n) using n to become the quantity of population size or searching
agents, F(i) signifies the fitness value. BF indicates the optimal fitness attained in the present iteration (thus far). The
function of hyperbolic sech was described as follows: 2
sech(x) =
ex + e_x
The expression for ——R is delineated as:

——R =2 X shrink % rand — shrink
shrink=2>(1-_")
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Now, rand characterizes a randomly generated value inside the range [0,1], and T signifies the total iteration counts.
The shrinking parameter, computed according to the present iteration t according to the total iterations T, ranges
between (0—2). These ranges consider how the impact on the shrink factor reduces in time, from its maximum at the
beginning of the searching procedure to 0 as t approaches T. Therefore, the R range that fine-tunes the activities range
the search agents derived from rand and shrink, further differs from 2 to 2. This dynamical range permits a measured
exploration of searching region, restricting as the model grows, to concentrate on exploiting optimal solutions
discovered.

Hunger rule
This part presents the mathematical method miming individuals’ starvation qualities, establishing the HGS method’s
core concept.
-W-1()= hungry (i) - - 14, —ifr3<|
{1, SHhungryN ifr3> |
W2 (i) = (L - exp(~[hungry (i) = SHrungy) 15 - 2

Given that hunger calculates every individual’s hunger level, N represents the entire individual count, and
SHungry characterizes the aggregated hunger through every individual, calculating their hunger levels
(hungry). rz, rs, and rs random numbers fall under the range [0,1]. The equation for computing a hungry
individual, hungry(i), is delineated in Eq. (25).
hungry (i) = { hungryO(,ifAllFitnessi) + H,ifAllFitness(i) = BF(i) 7

Here, AllFitness(i) collects the fitness values of all individuals for the present iteration. At all iterations, the best-
performing individual’s hunger level returns to 0. The upgraded hunger levels are denoted by H. The H value is
computed utilizing Eq. (26).

H={LH mnimu(1 + 1).ifTH < LH= 4

_ F(i)— BF

~ WF - BF
whereas rg represents a randomly generated amount within the interval of [0,1]; F(i) signifies the fitness value of all
individuals; BF characterizes the maximum fitness attained in the present iteration; WF indicates the low fitness gained
in the present iteration; LB and UB stands for the lower and upper limits of the feature area, respectively. As defined,
the hunger sensation signifies minimal values, and limits. To improve the model’s efficacy, hunger’s lower and upper
thresholds are processed by using the value of LHs to be explored in parameter tuning. Hunger can impact the range of
activity either negatively or positively. W; and W, are demonstrated to reflect that. During Eq. (28), the disparities
amongst LB and UB demonstrate the maximal hunger level in changing states; hunting possible in the present situation;
F(i) — BFFWFi determines the remaining food needed for the individual to fulfil DFDF WF — DF computes an
individual’s total 2 evaluates the environmental starvation; Every-tteration changes the hunger level of an individual.
()~ controls the hunger ratio; ré x

T(,2(UB—LB)

— influence, both positive and negative, on hunger.
The HGS approach originates an FF for getting an enhanced classification of performance. It explains a positive
number to imply the better result of the candidate solution. At this point, the classification error rate reduction is
measured as FF. Its formulation is expressed below:
fitness(x;) = classifierErrorRate(x;)

= no. of misclassified samples Totalno. of samplesx 100

IV. EXPERIMENTAL VALIDATION AND DISCUSSION

The simulation analysis of the ICSSADL-MHOA technique is examined under dual datasets such as ToNIoT*and
Edge-110T*. The ToN-loT database contains 119,957 no. of samples below nine class labels. The total number of
features is 42, but only 27 have been selected. The complete details of this dataset are depicted in Table 2. The
suggested technique is simulated using the Python 3.6.5 tool on PC i5-8600 k, 250 GB SSD, GeForce 1050 Ti 4 GB, 16
GB RAM, and 1 TB HDD. The parameter settings are provided: learning rate: 0.01, activation: ReLU, epoch count: 50,
dropout: 0.5, and batch size: 5.
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Figure 6 displays the classifier results of the ICSSADL-MHOA model on the ToN-loT dataset. Figures 6a6b displays
the confusion matrices by accurately identifying and classifying all classes below 70%TRPH and 30%TSPH. Figure 6¢
presents the PR study, which notified higher performance through all classes. At last, Fig. 6d demonstrates the ROC
study, which illustrates skilful solutions with significant values of ROC for different class labels.

The results from Table 3 and Fig. 7 show the performance of the ICSSADL-MHOA approach for detecting
cyberattacks on the ToN-loT dataset under two diverse attack proportions: 70% TRPH and 30% TSPH. For 70%
TRPH, the method illustrates high accuracy, with an average accu, of 99.42%, indicating superior performance in
identifying standard and attack class labels. The prec, of 92.51% suggests an effectual reduction of false positives,
while the sens, of 87.79% shows the capability of the model to detect a high percentage of true positive attack
instances. However, this sensitivity represents that some minority class attacks, like MiTM, may also not be detected,
suggesting room for improvement. The spec, of 99.53% demonstrates the capability of the technique to accurately
detect normal instances without false positives, and the F1.,. 0f 89.13% reflects a balanced prec, and recall. For 30%
TSPH, the performance slightly decreases, with an accu, of 99.44%, prec, of 92.17%, sens, of 87.76%, spec, of
99.56%, and an Flg,. € of 88.99%. The slight reduction in sens, for both configurations points to challenges in
detecting rare attacks, specifically under imbalanced data conditions. This reduction could be addressed by techniques
like resampling or weighted loss functions to enhance the detection of low-frequency attacks.

In Fig. 8, the training (TRA) and validation (VAL) accu, performances of the ICSSADL-MHOA technique on the
ToN-loT dataset are exemplified. The values of accu, are computed across a period of 0-25 epochs. The figure
underscored that the values of TRA and VAL accu, present a cumulative tendency indicating the proficiency of the
ICSSADL-MHOA method through maximum performance through multiple repetitions. In addition, the TRA and VAL
accuy values remain close through the epochs, notifying lesser overfitting and revealing the maximum outcome of the
ICSSADL-MHOA method, which guarantees steady prediction on unseen samples.

Figure 9 shows the TRA loss (TRALOS) and VAL loss (VALLOS) of the ICSSADL-MHOA approach on the ToN-loT
database. The loss values are computed throughout 0-25 epochs. The values of TRALOS and VALLOS depict a
diminishing trend, which indicates the proficiency of the ICSSADL-MHOA approach in harmonizing a tradeoff
between generalization and data fitting. The consecutive decrease in loss and securities values improved the
performance of the ICSSADL-MHOA technique and tuned the prediction results after a while.

Table 4 and Figs. 10-11 shows the comparative study of the ICSSADL-MHOA approach on the ToNIoT dataset with
existing methodologies below different metrics. The performances imply that the proposed ICSSADL-MHOA
approach has improved outcome accu, of 99.44%, prec, of 92.17%, sens, of 87.76%, spec,

ToN-loT Database

Classes No. of
Instances
“Normal” 78,369
“MiTM” 336
“DoS” 5440
“DDoS" 5987

“Password” 6016
“Injection” 5867
“XSS” 5951
“Ransomware” | 5976
“Backdoor” 6015
Total 119,957
Instances

Table 2. Details of the dataset.
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Fig. 6: ToN-10T dataset (a-b) Confusion matrices and (c-d) curves of PR and ROC.

of 99.56%. While the existing models DT, RF, KNN, SVM, XGBoost, MLP, and NB techniques have gained the
poorest performance.

Also, the proposed ICSSADL-MHOA method is examined under the Edge-l1loT dataset. This dataset has 56,000
records under 12 classes, as represented in Table 5. The total number of features is 62, but only 45 have been selected.
Figure 12 displays the classifier results of the ICSSADL-MHOA model on the Edge-110T dataset. Figures 12a-12b
depicts the confusion matrices through precise identification and classification of all classes below 70%TRPH and
30%TSPH. Figure 12c shows the PR examination, which notified superior performance over all class labels. Finally,
Fig. 12d exemplifies the ROC examination, which demonstrates capable solutions with significant values of ROC for
dissimilar class labels.

Table 6 and Fig. 13 demonstrate cyberattack detection of the ICSSADL-MHOA approach on the Edge-lloT dataset
below 70%TRPH and 30%TSPH is showcased. The performances show that the ICSSADL-MHOA model

1JRAI©2025 | An 1SO 9001:2008 Certified Journal | 13067




International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|[IVolume 8, Issue 3, May-June 2025||

DOI:10.15662/1JRAI.2025.0803010

Class Accu, | Prec, | Sens, | Spec, | “1score
Labels

TRPH (70%)

Normal 98.58 |98.78 | 99.06 | 97.67 | 98.92
MiTM 99.76 | 70.53 | 28.03 |99.97 1 40.12
DoS 99.42 193.38 | 93.63 | 99.69 | 93.51
DDoS 99.46 | 94.12 195.09 |99.69 | 94.61

Password 99.55 |95.02 | 95.91 | 99.74 | 95.46
Injection 99.49 | 95.07 |94.35|99.75 |94.71
XSS 99.57 |95.71 |95.51 | 99.78 | 95.61
Ransomware | 99.45 |95.21 |93.63 |99.75 | 94.41
Backdoor 99.48 | 94.74 194.88 | 99.72 | 94.81
Average 99.42 192,51 |87.79 |99.53 | 89.13
TSPH (30%)

Normal 98.71 198.89 199.12 | 97.94 | 99.01
MiTM 99.76 |65.79 | 25.77 | 99.96 | 37.04
DoS 99.39 193.85|93.13 |99.70 | 93.49
DDoS 99.49 194,52 195.41 |99.71 | 94.97

Password 99.57 |95.56 |96.13 |99.76 | 95.84
Injection 99.49 |95.49 [94.20 | 99.77 | 94.84
XSS 99.56 |94.83 |96.42 | 99.73 | 95.62
Ransomware | 99.58 |96.29 |95.27 |99.81 | 95.78
Backdoor 99.43 |94.28 |94.39 {99.70 | 94.33
Average 99.44 192.17 |87.76 | 99.56 | 88.99

Table 3. Cyberattack detection of ICSSADL-MHOA method on ToN-loT dataset.

ToN-loT Dataset
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Fig. 7: Average of ICSSADL-MHOA model on ToN-IoT dataset.

efficiently detected all class labels. Based on 70%TRPH, the ICSSADL-MHOA approach attains an average accuy, of
99.33%, prec, of 95.99%, sens, of 95.79%, spec, of 99.63%, and Fl. of 95.88%. Moreover, according to 30%TSPH,
the ICSSADL-MHOA approach attains an average accuy of 99.37%, prec, of 96.12%, sens, of

96.02%, spec, of 99.65%, and Flr of 96.07%.
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Figure 14 depicts the TRA and VAL accu, performances of the ICSSADL-MHOA technique on the EdgelloT dataset.
The values of accu, are computed through a period of 0-25 epochs. The figure underscored that the values of TRA and
VAL accu, show an increasing trend, indicating the capacity of the ICSSADL-MHOA approach with maximum
performance across numerous repetitions. Followed by the TRA and VAL accu, values remaining close across the
epochs, notifying diminished overfitting and showing the maximal performance of the ICSSADL-MHOA approach,
which assurances reliable prediction on unseen samples.

Figure 15 shows the TRALOS and VALLOS graph of the ICSSADL-MHOA methodology on the Edge-ll0oT dataset.
The loss values are computed throughout 0-25 epochs. The values of TRALOS and VALLOS represent

Training and Validation Accuracy - ToN-loT Dataset
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Fig. 8: Accuy curve of ICSSADL-MHOA model on the ToN-IoT dataset.
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Fig.9: Loss curve of ICSSADL-MHOA method on ToN-IoT dataset.
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a declining trend, which indicates the proficiency of the ICSSADL-MHOA approach in harmonizing a tradeoff
between data fitting and generalization. The successive dilution in values of loss and securities enhances and securities
enhances the outcome of the ICSSADL-MHOA approach and tunes the calculation results gradually.

Table 7 and Figs. 16-17shows the comparative study of the ICSSADL-MHOA approach on the Edge-l10T dataset with
existing methodologies below different metrics**“°. The performances denote that the proposed ICSSADL-MHOA
technique has gained superior outcome accu, of 99.37%, prec, of 96.12%, sens, of 96.02%, spec, of 99.65%. The
existing methods, Shallow ANN, Isolated LSTM, CNN, RF, SVM, DNN, and Inception Time techniques, have
achieved the poorest performance.

ToN-loT Dataset

Model Accu, Prec, |Sens, |Spec,
Decision 87.50 [79.52 |79.10 |95.67
Tree

Random 87.50 |89.15 |79.15 |97.85
Forest

kNN 97.60 |79.54 81.50 |95.88
Algorithm

SVM 74.70 |91.49 |85.95 |90.17
Classifier

XGBoost 97.80 [82.41 |79.66 |96.88
MLP 98.67 [82.07 |81.15 |96.65
Method

Naive Bayes | 99.22 [84.81 |84.41 |98.11
ICSSADL- [99.44 |92.17 |87.76 |99.56
MHOA

Table 4. Comparative analysis of ICSSADL-MHOA method on the ToN-l1oT dataset.

ToN-loT Dataset

[ Decision Tree Em XGBoost
m Random Forest mmm MLP Method
I kNN Algorithm I Naive Bayes
B SVM Classifier mm ICSSADL-MHOA
100 -
- 951
X
g 2]
=
©
> 85
80
75
70 -

Accuracy Precision

Fig. 10: Accu y and Prec , outcome of ICSSADL-MHOA technigque on ToN-loT dataset.
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ToN-loT Dataset

[ Decision Tree I XGBoost
mm Random Forest mmm MLP Method
I kNN Algorithm I Naive Bayes
B SVM Classifier mm ICSSADL-MHOA
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R 951
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Fig. 11: Sens , and Spec , outcome of ICSSADL-MHOA technique on ToN-IoT dataset.

Edge-110T Dataset
Types of | Data
Event Record
Normal 5000
DDoS-UDP 5000
DDoS-ICMP | 5000
SQL injection | 5000
DDoS-TCP 5000
Password 5000
DDoS-HTTP | 5000
Uploading 5000
Backdoor 5000
XSS 5000
Ransomware | 3000
Fingerpriniting | 3000
Total Record |56,000

Table 5. Details of Edge-110T dataset.
V. CONCLUSION

In this article, a new ICSSADL-MHOA technique is presented. The main aim of the ICSSADL-MHOA technique is to
enhance a robust cybersecurity system in loT networks. At first, the data normalization stage employs min— max
normalization to ensure consistency, accuracy, and efficiency by organizing data into a standardized format. Next, the
ITSO model was implemented for the FS process to detect the most relevant features in the data. Besides, the proposed
ICSSADL-MHOA model designs the BiLSTM-SA technique for the classification method of cybersecurity. Finally,
the parameter selection of the BiLSTM-SA is implemented using the HGS method. Comprehensive studies under the
ToN-1oT and Edge-l1oT datasets validate the efficiency of the ICSSADLMHOA method. The experimental validation
of the ICSSADL-MHOA method illustrated a superior accuracy value of 99.37% over existing techniques.

The ICSSADL-MHOA method’s limitations include reliance on a limited set of data sources, which may not fully
represent the diverse behavior of 10T environments and threats. Additionally, the computational complexity of specific
approaches could affect their applicability in resource constrained devices, affecting scalability and real-time
performance. The proposed models may also struggle to handle data imbalances and noisy environments, impacting the
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detection accuracy for minority class threats. Furthermore, many existing solutions fail to address cross-layer security
challenges comprehensively, which is significant for robust IoT defense. Future work should improve the model’s
adaptability across diverse loT systems, optimize computational efficiency, and develop hybrid techniques
incorporating diverse security layers. Enhancing real-time detection capabilities and exploring lightweight solutions for
edge devices would also be vital for the practical deployment of these methods. Additionally, further research could
focus on integrating adversarial ML techniques to improve the system’s robustness against sophisticated cyberattacks.

Training Phase (70%) - Edge-lloT Dataset Testing Phase (30%) - Edge-lloT Dataset
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Fig. 12: Edge-l10T dataset ( a-b ) confusion matrices and ( c-d ) curves of PR and ROC.
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Fig. 13: Average of ICSSADL-MHOA method on Edge-110T dataset.

|[Volume 8, Issue 3, May-June 2025||

DOI:10.15662/1JRAI.2025.0803010

Class Labels | Accu,

|Prec, | Sens, | Spec, | F1score

TRPH (70%)

Normal 99.34

96.63 | 96.00 | 99.67 | 96.31

DDoS-UDP 99.23

95.22 196.15 | 99.53 | 95.68

DDoS-ICMP  199.32

95.55 1 96.99 | 99.55 | 96.26

SQL injection |99.36

95.85 | 96.96 |99.59 | 96.40

DDoS-TCP 99.21

95.34 |95.88 |99.54 |195.61

Password 99.43

96.65 |96.98 |99.67 | 96.81

DDoS-HTTP |99.26

95.49 196.25 | 99.55 | 95.87

Uploading 99.36

96.46 | 96.43 | 99.65 | 96.44

Backdoor 99.31

96.50 | 95.64 | 99.66 | 96.07

XSS 99.30

96.09 |96.09 |99.61 |96.09

Ransomware |99.33

95.45 192.06 |99.75 | 93.73

Fingerpriniting | 99.51

96.62 | 94.04 | 99.81 | 95.31

Average 99.33 |95.99 | 95.79 |99.63 | 95.88
TSPH (30%)
Normal 99.29 [96.32 [ 95.68 [99.64 | 96.00

DDoS-UDP 99.38

96.89 | 96.25 | 99.69 | 96.57

DDoS-ICMP  199.42

96.44 196.96 | 99.65 |96.70

SQL injection |99.35

96.09 |96.84 | 99.60 | 96.46

DDoS-TCP 99.32

95.77 196.49 |99.59 | 96.13

Password 99.55

97.51 |97.57 |99.75 | 97.54

DDoS-HTTP | 99.27

95.68 | 96.07 | 99.58 | 95.88

Uploading 99.30

96.25 |95.93 |99.63 | 96.09

Backdoor 99.33

96.23 196.42 | 99.62 | 96.33

XSS 99.42

96.36 | 97.01 | 99.65 | 96.68

Ransomware |99.41

94.70 193.71 | 99.72 |1 94.20

Fingerpriniting | 99.39

95.14 193.35 |99.73 |1 94.24

Average 99.37

96.12 196.02 | 99.65 | 96.07

Table 6. Cyberattack detection of ICSSADL-MHOA method on Edge-110T dataset.

Edge-lloT Dataset

99.37

99.65

99.63
99.33
96.12 96.02 96.07
95.99 95.79 | 95.88 I

Accuracy Precision Sensitivity Specificity F1-Score

m Training Phase (70%) [ Testing Phase (30%)
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Fig. 14: Accu ycurve of ICSS ADL-MHOA method on Edge-lloT dataset.
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Fig. 15: Loss curve of ICSSADL-MHOA method on Edge-IloT dataset.

Edge-lloT

Dataset

Method Accu, |Prec, |Sens, |Spec,
Shallow ANN |93.28 |93.68 |87.03 |92.79
Isolated 98.19 |93.66 |88.86 |92.85
LSTM Model

CNN Mehtod |96.83 |93.08 |79.40 |93.41
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Random 82.43 190.24 | 87.99 |98.90
Forest
SVM Method |79.17 [88.00 |85.73 |96.70
DNN Model 96.30 191.78 |79.53 [94.90

Inception 96.54 |80.75 89.21 | 97.65
Time
ICSSADL- 99.37 |96.12 |96.02 |99.65
MHOA

Table 7. Comparative analysis of ICSSADL-MHOA method on Edge-110T dataset**,

Edge-lloT Dataset

[ Shallow ANN [ SVM Method
m Isolated LSTM Model =3 DNN Model
[ CNN Mehtod [ Inception Time
@ Random Forest @m ICSSADL-MHOA

100 -

95 -

Values (%)

85 -

80

75 -

Accuracy Precision

Fig. 16: Accu y and Prec , outcome of ICSSADL-MHOA method on Edge-IloT dataset.

Edge-lloT Dataset
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Fig. 17: Sens , and Spec , outcome of ICSSADL-MHOA method on Edge-l1oT dataset.
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