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ABSTRACT: The increasing adoption of digital banking platforms has intensified the need for secure, privacy-

preserving, and intelligent analytics capable of managing financial risk in real time. This paper presents a Secure 

Digital Banking architecture based on Federated Artificial Intelligence deployed on the AWS cloud, enabling predictive 

analytics without exposing sensitive customer data. The proposed framework leverages federated learning to train 
global risk prediction models across distributed banking institutions while ensuring data locality, regulatory 

compliance, and confidentiality. Built on AWS cloud-native services, the architecture integrates secure APIs, scalable 

microservices, encryption, access control, and continuous monitoring to support real-time risk intelligence. Predictive 

models analyze transactional patterns to detect fraud, credit risk, and operational anomalies with improved accuracy 

and reduced latency. Experimental evaluation demonstrates that the proposed federated AI architecture enhances data 

privacy, system scalability, and predictive performance compared to centralized analytics approaches. The framework 

offers a robust and future-ready solution for secure, intelligent, and compliant financial risk management in modern 

digital banking ecosystems. 
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I. INTRODUCTION 

 

Background and Motivation 

Digital banking systems have undergone rapid transformation with the adoption of artificial intelligence (AI) for 

predictive analytics, including fraud detection, credit scoring, and customer behavior forecasting. These AI models 

traditionally rely on aggregated centralized datasets to maximize performance. However, centralization raises 

significant privacy and regulatory challenges as financial data is highly sensitive and protected by laws such as 

GDPR, CCPA, and industry-specific regulations. Consequently, there is a growing need for AI approaches that can 

extract insights without compromising customer privacy. 

 

Federated learning (FL) is a decentralized machine learning paradigm that enables multiple parties to collaboratively 
train shared models while keeping raw data localized on the institutional boundary. In both academic and industrial 

research, FL is recognized for its promise to advance privacy-aware AI systems, especially in sectors where sensitive 

information must remain within data silos. 

  

What Is Federated Learning? 

Federated learning enables multiple clients (e.g., banks, branches) to train a global machine learning model by 

iteratively updating local model parameters based on each client’s private data, and then aggregating those updates at a 

central coordinator or server. No raw data ever leaves the local environment; only encrypted model updates are shared. 

FL can use secure aggregation protocols, differential privacy, and cryptographic techniques to strengthen privacy 

guarantees and avoid data leakage via model updates. (Amazon Web Services, Inc.) 

 

Why AWS? 

Cloud platforms like Amazon Web Services (AWS) provide a scalable, secure, and managed infrastructure ideal for 

federated analytics across distributed entities. AWS supports several services that facilitate FL deployment—including 

SageMaker AI, Kubernetes-based orchestration, elastic compute resources, and integration with security and 

compliance services. AWS also supports third-party federated learning frameworks such as Flower and NVIDIA 

FLARE, which are geared towards privacy-preserving machine learning at scale. (Amazon Web Services, Inc.) 
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Application to Digital Banking Systems 

In digital banking, federated predictive models can assist in: 

1. Fraud Detection: Detecting evolving patterns of fraudulent transactions across participating banks without sharing 

customers’ transaction logs. (Amazon Web Services, Inc.) 
2. Credit Risk Prediction: Enabling shared risk models across institutions while maintaining proprietary customer 

data on-premises. 

3. Customer Behavior Modeling: Aggregating learnings from multiple regional banks to better personalize services. 

These applications require strong privacy guarantees because financial datasets contain personally identifiable 

information (PII) and are subject to strict audit and compliance requirements. 

 

II. LITERATURE REVIEW 

 

Evolution of Federated Learning 

Federated learning was first introduced to enable collaborative learning across decentralized networks where data 

remains local to each device or entity. Early foundational work on federated systems and privacy stems from 

distributed computation and secure protocols developed in the 1990s and early 2000s, incorporating differential privacy 
mechanisms and secure multi-party computation. Research has documented how FL principles circumvent direct data 

pooling while enabling collaborative model training. 

 

Privacy Techniques in FL 

FL alone doesn’t guarantee complete privacy; there are known vulnerabilities where model updates can leak sensitive 

information if not properly protected. To address these concerns, surveys and frameworks introduce differential 

privacy, homomorphic encryption, and secure aggregation to mitigate privacy risks inherent in gradient exchange.  

 

Federated Learning in Cloud Ecosystems 

Recent research shows frameworks for federated learning in cloud environments to support business intelligence with 

privacy layers that integrate differential privacy and secure multiparty computation. These provide architectural 
blueprints that can generalize across industries including finance, healthcare, and IoT.  

 

AWS and Federated Learning Research 

Several AWS blogs and research articles describe practical federated learning architectures on AWS. For example, the 

Flower framework on SageMaker enables federated fraud detection across institutions, demonstrating model 

performance improvements while maintaining data privacy. (Amazon Web Services, Inc.) Similarly, NVIDIA FLARE 

on AWS provides tools for provisioning federated workflows, including secure communication and aggregation APIs. 

(Amazon Web Services, Inc.) 

 

Federated Learning in Financial Contexts 

Federated approaches have been applied to credit card fraud detection, customer analytics, and other financial use 

cases in academic research. Federated frameworks allow financial entities to jointly build predictive models without 
sharing raw transactional data, thereby avoiding competitive data disclosure and regulatory violations. (NORMA@NCI 

Library) 
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III. RESEARCH METHODOLOGY 

 

Research Design 

This study employs a mixed-method approach combining system design, implementation, and empirical 

evaluation. The architecture leverages AWS services to implement federated learning across simulated banking 

institutions. Predictive tasks include fraud detection and credit risk prediction. 

 

Architecture Overview 

1. AWS Federated System Components: 
o Client Instances: Hosted on AWS EC2 or SageMaker notebooks at each bank node where local models are trained 

on private data. 

o Coordinator Server: Aggregates encrypted model updates using secure aggregation protocols. 

o Frameworks: Flower and NVIDIA FLARE provide APIs for orchestrating and monitoring federated learning. 

(Amazon Web Services, Inc.) 

2. Privacy Mechanisms: 
o Differential Privacy (DP): Adds controlled noise to model updates to prevent inference attacks. 
o Secure Aggregation: Ensures that the server cannot derive individual gradient contributions. 

o Encryption: Model updates are encrypted in transit and at rest. 

3. Data Preparation: 
o Financial datasets with transaction histories were simulated to mimic cross-institutional heterogeneity. 

 

Implementation Steps 

1. Set Up AWS Environment: Provision VPCs, EC2 instances, IAM roles, and encryption keys. 

2. Deploy Frameworks: Install and configure Flower or FLARE frameworks across nodes. 

3. Model Training Rounds: Each node trains locally and shares encrypted updates. The aggregator computes a global 

model. 

4. Evaluation: Measure accuracy, privacy budget, communication overhead, and compliance adherence. 

Evaluation Metrics 

 Predictive Accuracy: Comparison to centralized baseline models. 

 Privacy Budget (ε): Measuring how differential privacy affects model performance. 

 Communication Overhead: Network traffic due to encrypted updates. 

 Scalability: Ability to scale across multiple federated clients. 

 

Ethical and Compliance Considerations 

This methodology respects data governance principles by design and includes compliance checks against privacy 

standards and auditing. 
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Advantages of Federated AI on AWS 

 Privacy Preservation: Data stays at source; only encrypted model updates are shared. (Amazon Web Services, 

Inc.) 

 Scalability and Elasticity: AWS infrastructures allow dynamic scaling of federated clients. 

 Regulatory Compliance: Helps meet GDPR and banking regulations by minimizing sensitive data movement. 

 Cross-Institution Collaboration: Enables model improvements using broader datasets without compromising 

privacy. (Amazon Web Services, Inc.) 

 

Disadvantages and Challenges 

 Communication Overhead: Increased bandwidth usage due to encrypted parameter sharing. 

 System Heterogeneity: Variations in client compute capabilities and data distribution can degrade performance. 

 Complexity of Privacy Guarantees: Balancing model accuracy with strong privacy budgets is nontrivial. 

 Infrastructural Costs: Cloud usage introduces recurring costs. 

 

IV. RESULTS AND DISCUSSION 

 

Model Performance 

Our federated models achieved near-centralized accuracy in fraud prediction, with accuracy differences within a 

small margin compared to centralized models. Controlled experiments showed training convergence within acceptable 

bounds across multiple clients despite data heterogeneity. 

 

Privacy vs. Accuracy Trade-offs 

Use of differential privacy increased robustness against inference attacks but slightly reduced predictive performance 

depending on privacy budget (ε). Effective tuning of ε–privacy trade-off is essential. 

 

Communication and Overhead 
Encrypted update exchange introduced overhead that increased with the number of participating clients. Efficient 

compression and asynchronous updates can reduce these costs. 

 

Operational Scalability 

Running federated workflows across AWS infrastructure demonstrated significant scalability, allowing dynamic 

deployment of new client nodes and automatic scaling based on workload. 

 

Regulatory Impacts 

Federated design supported the data minimum principle of modern privacy regulations and reduced audit complexities 

by ensuring that sensitive data never departed its original jurisdiction. 

 

V. CONCLUSION 

 

This research confirms that federated AI architecture on AWS is a viable and effective approach for privacy-

preserving predictive analytics in digital banking systems. By integrating federated learning with cloud-native 

services and advanced privacy techniques, financial institutions can jointly build predictive models without 

compromising customer privacy or violating regulatory standards. The AWS platform facilitates architectural flexibility 

and scalability, while frameworks like Flower and NVIDIA FLARE provide the operational tools necessary to 

implement and maintain federated workflows. 

 

The empirical results demonstrate that federated models can closely match centralized model performance while 

retaining strong privacy guarantees. Key challenges—such as communication overhead, system heterogeneity, and 

privacy/accuracy trade-offs—require careful design decisions and ongoing optimization efforts. 
 

Key Contributions 

 Designed and implemented a federated learning architecture using AWS services. 

 Evaluated privacy preservation techniques and cost–benefit trade-offs. 

 Demonstrated applicability to fraud detection and risk modeling use cases. 
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Federated learning represents a fundamental shift in how sensitive financial data can be used for predictive analytics 

without central data pooling, enabling collaborative intelligence while respecting privacy. 

 

VI. FUTURE WORK 

 

Future research can further enhance this work by investigating personalized federated learning approaches that adapt 

global models to the unique data distributions and operational requirements of individual institutions, thereby 

improving prediction accuracy and local relevance. Blockchain integration offers another promising direction by 

introducing decentralized trust and immutable audit trails, which can strengthen transparency, accountability, and 

regulatory compliance in federated environments. In addition, the adoption of advanced cryptographic techniques, such 

as homomorphic encryption and secure multi-party computation, can enable more robust privacy-preserving model 

training by allowing computations to be performed directly on encrypted model updates. Finally, cross-cloud federated 

analytics represents a critical extension of this research, enabling federated learning frameworks to operate seamlessly 

across multiple cloud platforms beyond AWS, improving interoperability, resilience, and scalability for large-scale 

digital banking ecosystems. 
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