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ABSTRACT: Modern cloud-native systems generate massive volumes of telemetry in the form of metrics, events, 

logs, and traces (MELT). While observability platforms have significantly improved visibility into distributed systems, 

incident response in large-scale environments remains heavily manual, reactive, and dependent on human 

interpretation. Site Reliability Engineering (SRE) teams are frequently overwhelmed by alert fatigue, fragmented 

signals, and delayed root cause identification, resulting in prolonged mean time to detection (MTTD) and mean time to 

resolution (MTTR). 

 

This paper presents a GenAI-Driven Observability and Incident Response Control Plane designed to transform 

observability from a passive monitoring capability into an active, intelligent decision-making system. The proposed 

framework integrates large language models (LLMs), machine reasoning, and telemetry correlation engines to 

continuously interpret system behavior, synthesize contextual insights, and assist or automate incident response 

workflows. Unlike traditional AIOps systems that rely on static rules or narrow statistical models, this approach 

leverages GenAI to reason across heterogeneous telemetry, historical incidents, architectural knowledge, and 

operational runbooks. 

 

The control plane introduces a layered architecture that combines real-time telemetry ingestion, semantic signal 

enrichment, GenAI-based incident interpretation, and policy-driven response orchestration. By embedding reasoning 

capabilities directly into the observability pipeline, the framework enables proactive anomaly detection, contextual root 

cause analysis, and guided remediation across complex cloud and microservices environments. This work demonstrates 

how GenAI can significantly reduce operational toil, improve response consistency, and enhance system resilience 

while preserving human oversight and regulatory controls in production systems. 

 

KEYWORDS: GenAI; observability; incident response; AIOps; SRE; telemetry correlation; root cause analysis; cloud 

reliability; LLMs; autonomous operations. 

 

I. INTRODUCTION 

 

Cloud-native architectures have fundamentally changed how modern applications are built and operated. Distributed 

microservices, container orchestration platforms, service meshes, and multi-cloud deployments enable rapid innovation 

but introduce significant operational complexity. Failures are no longer isolated events; they emerge from dynamic 

interactions between services, infrastructure layers, network dependencies, and external systems. 

 

Observability has emerged as a foundational capability for managing this complexity. By collecting metrics, events, 

logs, and traces (MELT), observability platforms provide deep visibility into system behavior. However, visibility 

alone does not guarantee understanding. In large-scale environments, the sheer volume and velocity of telemetry 

overwhelm human operators, leading to alert fatigue, delayed diagnosis, and inconsistent incident response. 

 

Despite advances in monitoring and alerting, incident management remains largely manual. Engineers must correlate 

signals across multiple tools, interpret ambiguous symptoms, recall historical context, and consult runbooks under time 

pressure. This human-centric approach does not scale with modern system complexity and contributes directly to 

extended outages and operational risk. 

 

Artificial intelligence has been applied to observability through AIOps platforms that attempt to detect anomalies or 

reduce noise. While these systems provide value, they are often limited by rigid models, lack of contextual reasoning, 
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and narrow problem scopes. They typically identify anomalies but fail to explain why an incident is occurring or how to 

resolve it effectively. 

 

Generative Artificial Intelligence (GenAI), particularly large language models (LLMs), introduces a new paradigm. 

GenAI systems are capable of reasoning across unstructured data, synthesizing context, and generating actionable 

insights. When applied to observability, GenAI can bridge the gap between raw telemetry and operational 

understanding by interpreting signals in the context of system architecture, historical incidents, and operational intent. 

 

This paper explores how GenAI can be integrated into observability platforms as an incident response control plane, 

shifting observability from passive data collection to active system reasoning. The proposed framework enables 

continuous interpretation of system state, contextual incident analysis, and policy-aware response orchestration while 

maintaining human control and auditability. 

 

II. BACKGROUND AND RELATED WORK 

 

2.1 Observability in Cloud-Native Systems 

Observability is commonly defined as the ability to understand the internal state of a system through its external 

outputs. In cloud-native environments, this is achieved through telemetry signals such as metrics, logs, traces, and 

events. These signals provide complementary views of system behavior, enabling engineers to diagnose failures and 

performance issues. 

 

Modern observability platforms aggregate telemetry across infrastructure, platforms, and applications. However, these 

platforms primarily focus on data collection, visualization, and alerting. Interpretation of signals remains largely 

manual, relying on engineers to form mental models of system behavior. 

 

2.2 Incident Response and SRE Practices 

Site Reliability Engineering emphasizes reliability as a feature that must be engineered into systems. Key SRE practices 

include defining service level objectives (SLOs), monitoring error budgets, and conducting structured incident response 

and postmortems. While SRE provides strong operational discipline, it still relies heavily on human expertise during 

incidents. 

 

As systems scale, SRE teams face increasing cognitive load. Incident responders must reason across distributed 

components, incomplete information, and evolving failure modes. This challenge has driven interest in automation and 

intelligent assistance. 

 

2.3 AIOps and Its Limitations 

AIOps platforms apply machine learning techniques to operational data to detect anomalies, cluster events, and reduce 

noise. These systems have demonstrated success in alert deduplication and trend detection. However, they often operate 

as black boxes, lack explainability, and struggle to adapt to novel failure scenarios. 

 

Most AIOps systems focus on pattern recognition rather than reasoning. They identify what is abnormal but provide 

limited insight into why it is happening or what action should be taken. 

 

2.4 Emergence of GenAI in Operations 

Recent advances in large language models have shown promise in reasoning over complex, unstructured data. GenAI 

has been applied to code generation, documentation, chat-based interfaces, and knowledge retrieval. Its ability to 

synthesize context makes it particularly well suited for operational domains that require holistic understanding rather 

than narrow prediction. 

 

Applying GenAI to observability introduces the possibility of interpreting telemetry in natural language, correlating 

signals semantically, and generating response recommendations aligned with operational policies and system design. 

 

 

 

 



   International Journal of Research and Applied Innovations (IJRAI)       

                           | ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal | 

     ||Volume 7, Issue 6, November–December 2024|| 

     DOI:10.15662/IJRAI.2024.0706027 

IJRAI©2024                                                           |     An ISO 9001:2008 Certified Journal   |                                                  11819 

 

III. PROBLEM STATEMENT AND DESIGN GOALS 

 

3.1 Problem Statement 

Despite significant investment in observability tooling, incident response in modern cloud environments remains 

reactive, manual, and error-prone. Telemetry data is abundant, but actionable insight is scarce. Engineers must perform 

complex reasoning tasks under pressure, leading to delayed detection, misdiagnosis, and prolonged outages. 

 

Existing automation approaches fail to address the core challenge: transforming raw telemetry into contextual 

operational understanding. Static rules and narrow machine learning models cannot reason across diverse signals, 

architectural intent, and historical knowledge. As a result, organizations experience high operational toil, inconsistent 

response quality, and increased reliability risk. 

 

The core problem addressed in this paper is the absence of an intelligent control plane that can continuously interpret 

observability data, reason about system behavior, and assist or automate incident response in large-scale cloud systems. 

 

3.2 Design Goals 

The proposed GenAI-Driven Observability and Incident Response Control Plane is guided by the following design 

goals: 

Contextual Telemetry Interpretation  
The system must reason across metrics, logs, traces, and events to form a unified understanding of system state. 

GenAI-Based Reasoning and Explanation  
The framework should leverage LLMs to explain anomalies, hypothesize root causes, and articulate reasoning in 

human-readable form. 

Proactive Incident Detection  
The control plane must identify emerging failure patterns before they violate service level objectives. 

Human-in-the-Loop Control  
Automation must support, not replace, human operators, preserving oversight and accountability. 

Policy-Aware Response Orchestration  
Incident responses must respect organizational policies, regulatory constraints, and change management controls. 

Scalability and Cloud-Agnostic Design  
The framework must operate across heterogeneous cloud platforms and large-scale distributed systems. 

 

IV. GENAI-DRIVEN OBSERVABILITY ARCHITECTURE 

 

Traditional observability platforms are designed primarily for data aggregation and visualization. While they provide 

comprehensive telemetry coverage, they lack the capability to interpret system behavior holistically or reason about 

failure conditions. To address this limitation, the proposed framework introduces a GenAI-Driven Observability 

Control Plane that embeds reasoning capabilities directly into the observability pipeline. 

 

The architecture is designed as a layered system that separates telemetry ingestion, semantic enrichment, reasoning, and 

response orchestration while maintaining tight integration across layers. This separation of concerns ensures scalability, 

extensibility, and operational safety in production environments. 
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Figure 1 illustrates the high-level architecture of the proposed control plane and its interaction with cloud-native 

systems, observability tooling, and incident response workflows. 

 

4.1 Telemetry Ingestion and Normalization Layer 

The foundation of the control plane is the telemetry ingestion layer, responsible for collecting signals from diverse 

sources across the system stack. These sources include application services, container platforms, cloud infrastructure, 

managed services, and network components. 

 

Telemetry types include: 

 Metrics capturing performance, availability, and resource utilization 

 Logs providing discrete event and error information 

 Distributed traces representing request execution paths 

 Events representing state changes, deployments, or infrastructure actions 

Given the heterogeneity of sources and formats, raw telemetry must be normalized into a common schema. This 

normalization enables consistent downstream processing and correlation. The ingestion layer also performs initial 

filtering, deduplication, and sampling to manage data volume while preserving diagnostic fidelity. 

 

Crucially, this layer remains vendor-agnostic, allowing integration with existing observability platforms rather than 

replacing them. The control plane augments observability capabilities rather than duplicating them. 

 

4.2 Semantic Signal Enrichment Layer 

Raw telemetry lacks contextual meaning without enrichment. The semantic enrichment layer augments normalized 

signals with metadata that captures architectural, operational, and business context. 

 

Enrichment dimensions include: 

 Service ownership and dependency relationships 

 Deployment versions and configuration state 

 Cloud region, availability zone, and environment classification 

 Service level objectives (SLOs) and error budgets 

 Historical incident associations and known failure modes 
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This enrichment transforms telemetry from isolated data points into semantically meaningful signals that can be 

reasoned about collectively. For example, a latency spike is no longer interpreted solely as a metric anomaly but as a 

potential symptom within a specific service dependency chain under defined reliability constraints. 

Semantic enrichment is critical for enabling GenAI-based reasoning. Without context, language models cannot 

accurately interpret operational signals or generate actionable insights. 

 

4.3 GenAI Reasoning and Interpretation Layer 

At the core of the control plane is the GenAI reasoning layer, which leverages large language models to interpret 

enriched telemetry and infer system behavior. Unlike traditional anomaly detection systems, this layer focuses on 

explanation and hypothesis generation rather than simple classification. 

 

The reasoning layer performs several key functions: 

 Correlating multi-modal telemetry across time and system boundaries 

 Identifying patterns consistent with known failure modes 

 Generating hypotheses for potential root causes 

 Explaining system behavior in natural language 

 Assessing confidence levels and uncertainty 

 

Rather than operating directly on raw data streams, the GenAI layer consumes structured summaries produced by 

upstream enrichment components. This design reduces noise, improves reasoning accuracy, and ensures explainability. 

To maintain operational safety, the reasoning layer is constrained by guardrails that limit speculative outputs and 

enforce alignment with validated system knowledge. Generated insights are treated as probabilistic assessments rather 

than definitive conclusions. 

 

4.4 Knowledge Integration and Memory Layer 

Effective reasoning requires access to institutional knowledge accumulated over time. The control plane integrates a 

persistent knowledge layer that provides contextual grounding for GenAI inference. 

 

This layer includes: 

 Historical incident timelines and postmortems 

 Architecture diagrams and service dependency graphs 

 Operational runbooks and remediation procedures 

 Change management records and deployment histories 

 Reliability policies and escalation thresholds 

 

By grounding GenAI reasoning in this knowledge base, the system avoids hallucination and ensures alignment with 

organizational practices. For example, when generating remediation guidance, the control plane references approved 

runbooks rather than inventing novel actions. 

 

The knowledge layer also enables continuous learning. Each resolved incident enriches the system’s understanding of 

failure patterns, improving future reasoning accuracy. 

 

4.5 Human Interaction and Explainability Interface 

A defining principle of the proposed architecture is human-in-the-loop operation. Rather than automating decisions 

blindly, the control plane exposes reasoning outputs through explainable interfaces designed for SREs and incident 

responders. 

 

Key capabilities include: 

 Natural language summaries of detected anomalies 

 Visual correlation of telemetry signals and dependencies 

 Confidence-ranked root cause hypotheses 

 Suggested remediation steps with rationale 

 Traceability between insights and underlying data 
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This interface transforms observability from a dashboard-driven experience into a collaborative reasoning system. 

Engineers can validate, refine, or override GenAI-generated insights, preserving accountability and trust. 

 

V. INCIDENT RESPONSE AND CONTROL PLANE DESIGN 

 

While observability provides insight into system behavior, incident response determines how effectively organizations 

mitigate failures. The proposed framework extends GenAI-driven reasoning into an incident response control plane 

that coordinates detection, diagnosis, and remediation activities. 

 

 
 

Figure 2 illustrates how the control plane orchestrates incident response workflows from detection through 

resolution. 

 

5.1 Proactive Incident Detection 

Traditional alerting systems rely on static thresholds or anomaly detectors that often generate excessive noise. In 

contrast, the proposed control plane evaluates system behavior holistically against reliability objectives. 

Incident detection is driven by: 

 Deviation from service level objectives 

 Correlated anomalies across dependent services 

 Behavioral changes following deployments or configuration updates 

 Repeated low-severity signals indicating emerging failure patterns 
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Figure 3 illustrates the policy-aware incident response decision flow within the GenAI-driven control plane, 

highlighting the separation between automated remediation for low-risk, high-confidence incidents and human-

approved responses for high-risk scenarios. The framework ensures operational safety, auditability, and 

compliance through confidence-based gating and continuous feedback. 

 

5.2 Contextual Root Cause Analysis 

Once an incident is detected, the control plane initiates contextual root cause analysis. This process differs 

fundamentally from traditional RCA by emphasizing explanation over classification. 

The GenAI reasoning layer evaluates: 

 Temporal relationships between signals 

 Dependency graph propagation effects 

 Similarities to historical incidents 

 Impact of recent changes 

 

The output is a ranked set of root cause hypotheses, each accompanied by supporting evidence and confidence 

estimates. This enables responders to focus on the most likely causes rather than exploring the system blindly. 

 

5.3 Policy-Aware Response Orchestration 

Incident response actions must respect organizational policies, regulatory requirements, and change management 

constraints. The control plane incorporates a policy enforcement layer that governs permissible actions. 

 

Response actions may include: 

 Automated rollbacks of recent deployments 

 Controlled restarts or scaling adjustments 
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 Traffic rerouting or feature flag toggles 

 Escalation to human responders 

 

Automation is applied selectively based on confidence thresholds and policy definitions. High-risk actions require 

explicit human approval, ensuring safety and compliance. 

 

5.4 Continuous Feedback and Learning Loop 

Every incident handled by the control plane contributes to system learning. Outcomes, decisions, and operator feedback 

are captured and fed back into the knowledge layer. 

 

This feedback loop enables: 

 Refinement of reasoning accuracy 

 Reduction of repeated false positives 

 Improved alignment with operational expectations 

 Evolution of response strategies over time 

 

Over time, the control plane evolves from an assistant into a trusted operational partner. 

 

VI. EVALUATION AND OPERATIONAL IMPACT 

 

Evaluating a GenAI-driven observability and incident response control plane requires metrics that reflect real 

operational outcomes rather than synthetic benchmarks. Traditional performance measures such as model accuracy or 

anomaly detection precision are insufficient in operational contexts. Instead, evaluation must focus on reliability 

outcomes, operational efficiency, and decision quality under real-world conditions. 

 

This section evaluates the proposed framework using SRE-aligned operational metrics and controlled incident 

simulations representative of large-scale cloud environments. 

 

6.1 Evaluation Methodology 

The control plane is evaluated across simulated and production-like environments that include containerized 

microservices, managed cloud services, and distributed data pipelines. Evaluation scenarios incorporate both historical 

incident replay and synthetic fault injection. 

 

Key evaluation dimensions include: 

 Mean Time to Detection (MTTD) 

 Mean Time to Resolution (MTTR) 

 Alert noise reduction 

 Incident response consistency 

 Human operator cognitive load 

 Policy compliance and auditability 

 

Rather than replacing existing observability platforms, the control plane operates as an augmentation layer, allowing 

direct comparison between traditional workflows and GenAI-assisted workflows. 

 

6.2 Impact on Mean Time to Detection (MTTD) 

One of the primary benefits of the GenAI-driven control plane is earlier detection of incidents through holistic 

reasoning across telemetry signals. 

 

Observed improvements include: 

 Faster detection of multi-service degradation patterns 

 Earlier identification of latent failure conditions 

 Reduction in delayed detection caused by fragmented alerts 
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By correlating weak signals across metrics, logs, and traces, the control plane identifies incidents before hard thresholds 

are breached. This proactive detection capability significantly reduces MTTD, particularly for cascading failures that 

are difficult to detect through isolated alerts. 

 

6.3 Impact on Mean Time to Resolution (MTTR) 

MTTR improvements are driven primarily by faster root cause identification and guided remediation. Traditional 

incident response requires responders to manually explore multiple hypotheses before converging on a cause. 

 

With GenAI-driven reasoning: 

 Root cause hypotheses are presented immediately with supporting evidence 

 Historical incident similarity accelerates diagnosis 

 Remediation guidance aligns with approved runbooks 

 

Controlled evaluations demonstrate substantial MTTR reduction, especially for complex incidents involving 

dependency failures or configuration drift. Responders spend less time searching for information and more time 

executing validated actions. 

 

6.4 Reduction in Alert Fatigue and Operational Toil 

Alert fatigue is a major contributor to operational burnout and error-prone decision-making. The control plane reduces 

alert noise by shifting from signal-level alerts to incident-level reasoning. 

 

Key outcomes include: 

 Consolidation of correlated alerts into single incidents 

 Suppression of low-context, low-impact signals 

 Prioritization based on service impact rather than metric deviation 

 

By presenting fewer, higher-quality alerts, the system reduces cognitive load and enables responders to focus on 

meaningful events. This directly contributes to lower operational toil and improved response consistency. 

 

6.5 Incident Response Consistency and Knowledge Retention 

Human-driven incident response quality varies significantly based on experience, familiarity with systems, and 

situational stress. The control plane improves consistency by grounding decisions in shared knowledge and 

standardized reasoning processes. 

 

Benefits include: 

 Uniform interpretation of telemetry across teams 

 Consistent application of remediation procedures 

 Preservation of institutional knowledge beyond individual engineers 

 

By embedding historical context and runbooks into the reasoning process, the system reduces reliance on tribal 

knowledge and improves organizational resilience. 

 

VII. SAFETY, GOVERNANCE, AND REGULATED-ENTERPRISE CONSIDERATIONS 

 

While GenAI introduces powerful reasoning capabilities, its use in production incident response must be carefully 

governed. Unconstrained automation poses risks, particularly in regulated environments where auditability, 

explainability, and control are mandatory. 

 

This section examines safety and governance considerations essential for real-world adoption. 

 

7.1 Human-in-the-Loop Enforcement 

A core design principle of the control plane is human-in-the-loop operation. Automation is applied selectively based 

on confidence thresholds, policy definitions, and impact scope. 
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Key safeguards include: 

 Mandatory human approval for high-risk actions 

 Explainable reasoning outputs for all recommendations 

 Clear separation between suggestion and execution 

This approach balances operational efficiency with accountability, ensuring that GenAI augments rather than replaces 

human judgment. 

 

7.2 Policy and Compliance Alignment 

In regulated industries, incident response actions must comply with organizational policies and regulatory 

requirements. The control plane integrates a policy layer that governs permissible actions and escalation paths. 

 

Policy constraints include: 

 Change management approvals 

 Segregation of duties 

 Data residency and access controls 

 Audit logging requirements 

By enforcing policies programmatically, the system ensures that automation does not violate compliance obligations. 

 

7.3 Auditability and Explainability 

Explainability is critical for trust and regulatory acceptance. The control plane records: 

 Telemetry inputs used in reasoning 

 Generated hypotheses and confidence scores 

 Decisions made by humans or automation 

 Actions taken and their outcomes 

These records provide end-to-end traceability suitable for audits, postmortems, and regulatory reviews. Importantly, 

GenAI outputs are treated as advisory insights rather than authoritative commands, preserving transparency. 

 

7.4 Risk Mitigation and Failure Modes 

GenAI systems are subject to limitations such as hallucination, bias, and uncertainty. The proposed framework 

mitigates these risks through architectural constraints: 

 Bounded context windows 

 Knowledge grounding through validated sources 

 Confidence estimation and uncertainty signaling 

 Fallback to traditional workflows when confidence is low 

By designing for graceful degradation, the control plane ensures reliability even when GenAI components are 

unavailable or uncertain. 

 

VIII. CHALLENGES, LIMITATIONS, AND FUTURE DIRECTIONS 

 

While the proposed GenAI-Driven Observability and Incident Response Control Plane demonstrates significant 

potential, several challenges and limitations must be acknowledged. These considerations are critical for responsible 

adoption and future research. 

 

8.1 Limitations of GenAI in Operational Contexts 

Generative AI models, including large language models, are probabilistic systems that may produce incomplete, 

ambiguous, or incorrect outputs. In operational environments, such behavior introduces risk if not carefully 

constrained. 

 

Key limitations include: 

 Hallucination Risk: GenAI may infer causal relationships that are not supported by telemetry data. 

 Context Window Constraints: Large-scale systems generate telemetry volumes that exceed model context limits. 

 Temporal Reasoning Gaps: Understanding long-running or slow-burn incidents remains challenging. 

 Domain Adaptation: Models require careful tuning to align with organization-specific architectures and practices. 
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The proposed framework mitigates these limitations through knowledge grounding, confidence signaling, and human-

in-the-loop controls, but residual risk remains inherent to GenAI systems. 

 

8.2 Scalability and Cost Considerations 

Continuous reasoning over high-volume telemetry introduces computational and cost overheads. Without careful 

design, GenAI inference can become prohibitively expensive at scale. 

Mitigation strategies include: 

 Tiered reasoning (event-level vs incident-level) 

 Selective invocation based on signal confidence 

 Caching and reuse of historical reasoning artifacts 

 Model selection based on task criticality 

Future work must explore cost-efficient architectures and hybrid reasoning models that balance depth of insight with 

operational feasibility. 

 

8.3 Data Privacy and Security Constraints 

Observability data often contains sensitive operational and customer information. Applying GenAI to such data raises 

concerns around privacy, access control, and data leakage. 

The framework assumes: 

 Strict access control to telemetry inputs 

 Redaction of sensitive fields prior to reasoning 

 Deployment of GenAI models within controlled enterprise environments 

Further research is needed to formalize privacy-preserving GenAI techniques for observability, particularly in regulated 

industries. 

 

8.4 Organizational and Cultural Adoption 

Technical capability alone is insufficient to transform incident response. Successful adoption requires cultural 

alignment across engineering, operations, and leadership teams. 

Challenges include: 

 Trust in GenAI-generated insights 

 Resistance to automation in high-stakes scenarios 

 Redefinition of SRE and on-call responsibilities 

Gradual rollout, transparent reasoning, and strong governance are essential to overcoming these barriers. 

 

8.5 Future Research Directions 

Several avenues for future exploration emerge from this work: 

 Autonomous remediation with bounded risk guarantees 

 Multi-agent GenAI systems for distributed reasoning 

 Integration with chaos engineering platforms 

 Formal verification of GenAI-assisted decisions 

 Cross-organization incident knowledge sharing 
These directions represent opportunities to further evolve observability from reactive tooling into proactive system 

intelligence. 

 

IX. CONCLUSION 

 

This paper presented a GenAI-Driven Observability and Incident Response Control Plane designed to address 

fundamental limitations in how modern cloud systems are monitored and operated. As cloud-native architectures grow 

in scale and complexity, traditional observability approaches—focused on dashboards, alerts, and manual reasoning—

are no longer sufficient to ensure reliability. 

 

By embedding GenAI-based reasoning directly into the observability pipeline, the proposed framework transforms 

telemetry into contextual operational understanding. The control plane enables proactive incident detection, explainable 

root cause analysis, and policy-aware response orchestration while preserving human oversight and regulatory 

compliance. 
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Unlike conventional AIOps systems, this approach emphasizes reasoning over prediction, explanation over 

classification, and collaboration over automation. Through layered architecture, knowledge grounding, and human-

in-the-loop enforcement, the framework balances innovation with operational safety. 

 

Evaluation results demonstrate meaningful improvements in detection speed, resolution time, alert quality, and 

response consistency. At the same time, the paper acknowledges the limitations of GenAI and outlines clear safeguards 

and future research paths. 

 

In conclusion, GenAI represents a foundational shift in how observability and incident response can be designed. When 

applied responsibly, it enables a new class of intelligent control planes that enhance system resilience, reduce 

operational toil, and empower engineers to manage increasingly complex distributed systems with confidence. 
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