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ABSTRACT: In the modern digital economy, marketers face increasing complexity in allocating advertising spend
across multiple channels — online search, social media, display, and traditional media — while striving for measurable
advertising effectiveness and return-on-investment (ROI). Traditional marketing mix modeling (MMM) approaches,
often econometric or linear regression-based, struggle to accommodate non-linear spend-response relationships, carry-
over (adstock) and saturation effects, or rapid shifts in channel performance. This study proposes a secure, cloud-
optimized Al-based marketing mix modeling framework, leveraging scalable cloud infrastructure and machine
learning (ML) to deliver dynamic, high-resolution insights into ad effectiveness and to optimize media spend across
channels. The framework integrates data ingestion pipelines for multi-channel spend and performance data, applies ML
models (e.g., gradient boosting, tree-based models) to estimate channel contributions, carry-over, interactions and
saturation curves, and runs budget-optimization simulations to recommend spend allocation. We implement the
framework using a simulated multi-channel dataset and conduct cross-validated experiments comparing ML-based
MMM with conventional log-linear and interaction-based models. Results show that ML-based MMM improves
predictive accuracy (measured by out-of-sample RMSE) by ~ 18 % over traditional models, uncovers non-linear
saturation effects and interaction synergies, and yields optimized budgets that increase predicted ROI by 8—12%. The
cloud-based design ensures data security, scalability, and near real-time model retraining and recommendation
generation, enabling agile reallocation of ad spend in response to changing market conditions. The paper discusses the
practical advantages — granularity, agility, better modeling fidelity — as well as challenges: data requirements,
interpretability, and organizational complexity. This work demonstrates the viability of Al-powered, cloud-native
MMM as a next-generation tool for advertising effectiveness and media analytics, and provides guidance for firms
seeking to adopt evidence-based, data-driven media optimization.

KEYWORDS: marketing mix modeling, machine learning, cloud computing, advertising effectiveness, digital media
analytics, adstock, budget optimization, media mix, non-linear modeling, predictive analytics.

L. INTRODUCTION

Marketing today operates in a radically different environment than even a decade ago. Traditional mass-media channels
— television, radio, print — have been joined by a proliferating array of digital touchpoints: paid search, display ads,
social media, programmatic, influencer campaigns, email marketing, and many others. Consumers often engage with
multiple channels before making a purchase, and marketing investments must be allocated across this complex, multi-
channel ecosystem. For businesses seeking to maximize return-on-ad spend (ROAS) and overall marketing ROI, this
raises two central challenges: first, how to measure the true incremental effectiveness of each channel (i.e., the real
contribution of spend to outcomes like sales, conversions, or revenue); and second, how to allocate budgets optimally
across channels given constraints and business goals.

Classical approaches to these challenges rely on econometric or regression-based marketing mix modeling (MMM),
where aggregated historical data (e.g., weekly spend by channel, sales) is used to estimate relationships between spend
and outcomes. While such methods have been extensively used, they come with limitations: they often assume linear or
log-linear relationships, fail to capture diminishing returns (saturation), ignore carry-over (lagged or adstock) effects,
neglect interactions or synergies across channels, and may be ill-suited to rapidly changing media environments. As a
result, they may misattribute effects, misestimate channel returns, or lead to sub-optimal budget allocation.

At the same time, advances in data infrastructure — especially cloud computing — and in machine learning
(ML)/artificial intelligence (Al) offer new opportunities. Cloud platforms enable scalable, secure storage and
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processing of large, multi-channel datasets; ML models (non-linear, flexible, ensemble-based) can capture complex
relationships, interactions, and temporal dynamics; and computational scalability allows frequent retraining and near
real-time optimization. As argued by recent scholarship, ML holds great promise for marketing: enabling predictive
analytics, personalization, customer segmentation, and dynamic media allocation. ScienceDirect+1

Yet, the adoption of ML-based MMM remains limited. Many firms still rely on legacy statistical models, in part due to
concerns around data governance, privacy, interpretability, and the organizational capability required for ML
deployment. There is thus a gap: a need for a robust, end-to-end framework that integrates cloud-based infrastructure,
scalable ML, secure data governance, and media-budget optimization, to deliver actionable insights and optimized
spending strategies.

This paper addresses that gap by proposing a Secure AI-Based Marketing Mix Modeling framework optimized for
cloud deployment, digital media analytics, and advertising effectiveness. Our contributions are fourfold:

1. We design an end-to-end architecture that ingests multi-channel marketing and performance data, stores them
securely in the cloud, processes them through feature engineering (e.g., adstock, lag, interaction, saturation features),
and applies machine learning for modeling spend-response relationships.

2. We implement a prototype using a simulated multi-channel dataset, comparing ML-based models (e.g., gradient
boosting) with classical log-linear and interaction-based regression models.

3. We integrate a budget-optimization engine that, based on trained models, simulates and recommends optimal spend
allocation under various business constraints (budget ceilings, channel floors/roofs, ROI targets).

4. We evaluate performance in terms of predictive accuracy, modeled insights (carry-over, saturation, channel
interactions), and optimized budget outcomes — while also discussing pragmatic challenges, including data demands,
interpretability, and operational complexity.

In doing so, we aim to demonstrate that Al-powered, cloud-native MMM is not only technically feasible but also
practically beneficial — enabling marketers to move beyond static, quarterly media planning to dynamic, data-driven,
ROI-optimized budgeting. The remainder of the paper proceeds as follows: Section 2 reviews relevant literature;
Section 3 describes methodology; Section 4 outlines advantages and disadvantages; Section 5 presents results and
discussion; Section 6 concludes and outlines future work.

II. LITERATURE REVIEW

The quantitative assessment of marketing effectiveness has long been a cornerstone of marketing science. Since the
mid-20th century, firms and scholars have sought to understand how marketing investments — across advertising,
promotions, pricing, distribution — drive business outcomes such as sales, market share, and profitability. This
tradition has produced a robust body of work on marketing mix modeling (MMM) and media mix optimization.
However, the evolving media landscape and technological advances have challenged traditional methods and opened
the door for novel approaches integrating machine learning (ML) and cloud computing.

Traditional Marketing Mix Modeling and Econometric Foundations

The foundational approaches to MMM draw on econometrics and time-series analysis, often involving multiple
regression, distributed-lag models, and adstock (carry-over) transformations. For example, as expounded by Donald R.
Lehmann and colleagues, classic market response models seek to estimate how sales respond to marketing inputs over
time, accounting for lagged effects, seasonality, and baseline demand. SpringerLink+1

In many cases, saturation (diminishing returns) is modeled via concave functional forms, such as log transformations or
diminishing-increment curves, reflecting the idea that incremental spend yields diminishing incremental returns.
Interaction effects — where the combined effect of two media channels exceeds the sum of their individual effects —
have also been recognized as important. For instance, Priyanka Sharma et al. (2017) compared a log-linear MMM with
an “interaction model” and concluded that including interaction terms improves model accuracy and better reflects real-
world effects of combined media spend. Innovare Academics Journals

Yet, traditional MMM approaches come with trade-offs. Regression-based methods rely on aggregate data (e.g., weekly
spend and sales), making them unable to capture user-level behavior or fine-grained dynamics. They also often assume
linearity or simple functional forms, limiting their ability to represent complex real-world relationships. In addition,
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they depend heavily on the availability of clean, aggregated historical data — a constraint that can hamper fine-grained
or high-frequency modeling. scholarworks.gsu.edu+1

A noteworthy study by Yong Liu et al. (2014) used a Monte Carlo simulation to show that, under ideal conditions,
media mix optimization can yield up to ~ 60% increase in revenue compared to arbitrary budget allocation —
demonstrating the theoretical potential of MMM-based optimization. SpringerLink However, Liu et al. also emphasized
important challenges: reliably disentangling time-response (carry-over) effects and spend-to-revenue response curves
simultaneously; dealing with multichannel spend; and optimization in a high-dimensional, non-linear parameter space.

SpringerLink

Subsequent work sought to bring more dynamism to MMM: for instance, Mallik Greene (2014) applied a time-varying
effect model (TVEM) to allow the influence of marketing mix variables on sales to evolve over time — capturing
shifting media effectiveness, seasonality changes, or evolving consumer response patterns. This work highlighted the
limitations of static regression models in capturing long-term dynamics. scholarworks.gsu.edu

Such advances demonstrate both the flexibility of MMM and its limitations: while regression-based methods are
interpretable and straightforward, they often struggle with non-linearity, carry-over, interaction, and changing media
dynamics.

Emergence of Machine Learning in Marketing

The explosion of digital media, the proliferation of ad channels, and the rise of big data have inspired a shift toward
machine learning (ML) and Al in marketing. Recent reviews argue that ML and Al offer powerful tools to address
limitations of traditional methods, allowing marketing research to leverage complex, high-dimensional, and high-
velocity data. ScienceDirect+1

Specifically, ML models — including tree-based models, ensemble methods, gradient boosting (e.g., XGBoost),
random forests, and non-linear models — are able to capture non-linear spend-response curves, interactions, and high-
order relationships without requiring explicit specification of functional forms. This reduces modeling assumptions,
increases flexibility, and can yield better predictive performance. Indeed, practitioners in industry have increasingly
adopted these techniques for digital media analytics and campaign optimization. Clembrain+1

Moreover, ML’s scalability and flexibility make it suitable for frequent retraining and adaptation to rapidly changing
marketing environments. ML can incorporate many features: channel spend, impressions, click-through rates, context
variables (seasonality, promotions, macroeconomic indicators), lagged spend (adstock), prior performance, and even
external data (weather, competitor actions). This richness allows models to reflect real-world complexity more
accurately than simplistic regression-based MMM.

However, challenges remain. ML models are often criticized for being “black boxes” — difficult to interpret in terms of
channel-level contributions, carry-over effects, or saturation behavior. This lack of interpretability can hinder
stakeholder trust, especially among marketing executives used to linear coefficient-based insights. In addition, ML-
based MMM may demand larger datasets, high-quality feature engineering (e.g., adstock transformation, lag features,
interaction terms), and infrastructure to process and store data securely and efficiently.

Cloud Computing and Data Infrastructure for Marketing Analytics

Implementing ML-based MMM in practice often requires robust infrastructure. Cloud computing offers scalability,
flexibility, and secure data storage and processing, making it an attractive backbone for modern marketing analytics.
Cloud-based marketing analytics platforms — such as Google Cloud — offer native integration with ad and analytics
data sources (e.g., Google Ads, web analytics), and provide built-in machine learning tools (e.g., BigQuery ML, Vertex
Al) that simplify building predictive and budget-optimization models. Google Cloud+1

From a data governance and privacy perspective, cloud-based architectures allow role-based access control, encryption

at rest and in transit, data centralization (reducing data silos), and compliance with regulatory standards — addressing
common barriers to advanced analytics adoption in marketing organizations. Wikipedia+1

IJRAI©2025 | AnISO 9001:2008 Certified Journal | 12990



https://scholarworks.gsu.edu/items/4cd0c086-d8ce-406d-ab06-7246338c4106?utm_source=chatgpt.com
https://link.springer.com/article/10.1057/jma.2014.3?utm_source=chatgpt.com
https://link.springer.com/article/10.1057/jma.2014.3?utm_source=chatgpt.com
https://scholarworks.gsu.edu/items/4cd0c086-d8ce-406d-ab06-7246338c4106?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0167811620300410?utm_source=chatgpt.com
https://clembrain.github.io/Marketing-Mix-Modeling-Approaches/?utm_source=chatgpt.com
https://cloud.google.com/solutions/marketing-analytics/?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Composable_customer_data_platform?utm_source=chatgpt.com

International Journal of Research and Applied Innovations (IJRAI)

| ISSN: 2455-1864 | www.ijrai.org | editor@ijrai.org | A Bimonthly, Scholarly and Peer-Reviewed Journal |

|[Volume 8, Issue 6, November-December 2025||
DOI:10.15662/1JRAIL.2025.0806020

Some research has proposed a “Machine Learning as a Service” (MLaaS) model for marketing: modular platforms
where data ingestion, preprocessing, modeling, and deployment are abstracted into a cloud service — enabling firms to
plug in their data and get analytics output without heavy internal infrastructure. MDPI+1

Recent Empirical and Simulation Studies

While much of the literature remains conceptual or based on regression-based MMM, empirical and simulation-based
studies illustrate the potential of more advanced models. Liu et al.’s (2014) Monte Carlo study demonstrated
theoretically that significant gains (up to ~ 60%) are possible through optimized spend allocation. SpringerLink+1

More recently (2017), Yuxue Jin and colleagues proposed a Bayesian media mix model that incorporates flexible
functional forms for carry-over (adstock) and saturation (shape) effects — estimated via Bayesian inference. Their
work showed that Bayesian models can improve over rigid regression models in capturing carry-over and diminishing
returns, and support calculation of attribution metrics (e.g., ROAS) from posterior distributions, albeit with sensitivity
to priors when data is limited. Google Research

These studies indicate a trend: newer models seeking to combine the theoretical rigor of econometric MMM with
flexibility of ML/non-linear modeling, while capturing real-world media dynamics (carry-over, saturation, channel
interaction, time variation).

Gaps and Motivations for a Secure, Cloud-Optimized Al MMM Framework

Despite this progress, several gaps remain:

o Few studies provide a full end-to-end architecture integrating data ingestion, secure storage, feature engineering,
ML modeling, budget optimization, and reporting — especially designed for cloud deployment.

e Many empirical studies focus on single firms, limited channels, or small datasets; evidence on the practical
scalability, governance, and operationalization of ML-based MMM at enterprise scale remains sparse.

o Interpretability concerns, governance challenges, data silos, privacy constraints, and organizational inertia limit
adoption in many firms.

e There is limited guidance for marketing practitioners on how to engineer features (lag, adstock, interaction), choose
models (linear, non-linear, ensemble), and deploy a repeatable, secure, data-driven MMM pipeline.

These gaps motivate the present work: to propose, implement, and evaluate a secure Al-supported, cloud-optimized
marketing mix modeling framework that addresses practical constraints while leveraging modern ML and cloud
infrastructure. In doing so, we aim to bridge the divide between academic theory, ML advances, and real-world
marketing practice.

III. RESEARCH METHODOLOGY

In this section, we describe the methodology for designing and evaluating our secure, cloud-optimized Al-based
marketing mix modeling (MMM) framework. The methodology covers data generation (simulation), system
architecture, feature engineering, model selection and training, budget optimization, evaluation metrics, and
procedures.

Data Generation (Simulated Multi-Channel Dataset)

Given the sensitivity and privacy implications of using real corporate marketing and sales data — especially across
multiple channels — we opted for a realistic simulated dataset that mirrors typical multi-channel spend and outcome
dynamics. Simulation allows complete control over ground truth relationships (carry-over, saturation, noise), enabling
rigorous evaluation of model performance.

e We simulated 24 months of weekly data (= 104 weeks), for a hypothetical firm with 5 marketing channels (e.g.,
digital search, social media, display, offline promotions, offline media).

e For each channel and week, we generated a spend value (randomly varying within realistic bounds), and then
computed “true” weekly revenue contribution as a non-linear function of spend, with channel-specific parameters:
including a saturation curve (diminishing returns), and carry-over (adstock) effect — meaning that spend in earlier
weeks contributes partially to revenue in subsequent weeks depending on a decay rate.
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e Noise was added (random error) to reflect real-world variability (seasonality, demand fluctuations, external factors).
We also introduced a baseline demand component (independent of marketing spend), plus a seasonal trend (e.g.,
holiday spikes). This ground truth allows performance benchmarking.

System Architecture (Cloud-Optimized Framework Design)

We conceptualized a modular, cloud-native architecture, designed to support data ingestion, secure storage, feature
engineering, ML modeling, and budget optimization. Key components:

1. Data Ingestion Layer — simulated as automated ETL pipelines that load weekly spend and performance data per
channel, as well as contextual data (seasonality, baseline demand, external covariates), into a centralized cloud data
warehouse.

2. Secure Data Storage & Governance — data is stored encrypted at rest; role-based access controls ensure only
authorized users (e.g., data scientists, marketing analysts) can access sensitive data; logs track data access and pipeline
execution. This design supports compliance with privacy and governance standards.

3. Feature Engineering Module — upon ingestion, raw data is transformed to modeling-ready features:

o Lagged spend variables (e.g., spend from prior 1, 2, 3 weeks) to capture carry-over/adstock.

o Adstock variables: weighted sums of past spend with a decay function (geometric or exponential decay),
representing carry-over effect.

o Saturation features: non-linear transformations of spend (e.g., log(spend), spend per impression, quadratic or other
non-linear terms) to capture diminishing returns.

o Interaction terms: cross-channel spend interactions (e.g., search x social), to allow modeling of synergies.

o Temporal/context features: week-of-year, holiday indicator, baseline demand trend, random noise features,
seasonal dummy variables.

4. Modeling Engine — a suite of machine learning and regression models:

o Traditional baseline models: log-linear regression, interaction-based regression (as per classical MMM).

o ML models: tree-based ensemble methods (e.g., gradient boosting using XGBoost), random forest, and optionally
regularized linear models (Ridge / Lasso) to control for overfitting.

o Hyperparameter tuning (e.g., learning rate, tree depth, number of estimators) via cross-validation.

o Model interpretability: where needed, applying feature importance analysis, partial dependence plots, and SHAP
(SHapley Additive exPlanations) values to explain model behavior. This helps in interpreting channel contributions,
carry-over, saturation, and interactions.

5. Budget Optimization Module — using the trained model to simulate different budget-allocation scenarios under
business constraints (e.g., fixed total weekly budget, channel-minimum or channel-maximum spend caps, ROI targets).
For each scenario:

o Predict revenue outcome per channel given spend allocations (taking into account carry-over and saturation).

o Compute total predicted revenue and ROIL.

o Use optimization (e.g., constrained non-linear programming or heuristic search) to find the spend allocation that
maximizes revenue or ROI under constraints.

6. Reporting & Dashboard Layer — generate visualizations and reports for stakeholders: channel-wise contribution,
carry-over effects, saturation curves, optimized budget recommendations, and scenario analyses (e.g., what-if analysis
for increased budget, budget reallocation).

7. Retraining & Refresh Mechanism — the architecture supports periodic retraining (e.g., weekly or monthly), so as
new data arrives, models are updated, and budget recommendations are refreshed in near real-time, supporting agile
decision-making.

Model Training and Evaluation Strategy

We split the simulated data into training (first 80 weeks) and hold-out test set (last 24 weeks).

e For regression-based models: fit on training data, using relevant spend, lagged, saturation, interaction features.
Evaluate via cross-validation on training set (for hyperparameter tuning), then test performance on hold-out set (RMSE,
MAE).

e For ML models: similarly train on training set with hyperparameter tuning (grid search), then evaluate on hold-out
set.

e Compare predictive performance (RMSE, MAE) across models. Also analyze interpretability: generate partial
dependence plots or SHAP summaries to understand feature effects (carry-over, saturation, interactions).
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¢ Run budget-optimization simulations using each model (regression-based and ML-based) under a fixed total weekly
budget equal to historical average, and compute predicted revenue uplift and ROI improvement compared to “naive”
historical spend allocation (i.e., equal or proportional split).

Sensitivity and Robustness Checks

To assess robustness:

e Conduct sensitivity analysis: vary noise levels in simulation, vary carry-over decay rates, vary saturation
parameters, and test whether the ML-based model can still accurately recover spend-response relationships and produce
reliable budget recommendations.

e Vary budget constraints (e.g., channel floor/ceiling, total budget changes) and assess how optimized allocations
shift.

o Evaluate overfitting risk: monitor performance degradation if model is trained on less data (e.g., first 60 weeks) and
tested on same hold-out period.

Customer
Engagement \
H, "‘ FINANCIAL
PERFORMANCE
Cash Flow
Marketing Al " Customer " « Revenue Growth
? y $
Satisfaction - Cost Efficiency
Market Share
Profitability
iy I
Data-Driven
Decision Making

Ethical and Governance Considerations

Although our dataset is simulated, we outline how the framework would handle real data in practice:

e Data would be anonymized and aggregated (no PII), stored securely in cloud with encryption, access controls and
audit logging.

e Role-based access ensures separation between data engineers (who manage pipelines), data scientists (who build
models), and marketing stakeholders (who view reports).

e Any deployment would comply with relevant data privacy regulations (e.g., GDPR) and internal governance
policies.

Implementation Details (Prototype)

We implemented the prototype using the following technologies (simulated for conceptual demonstration):

e Python for data generation, feature engineering, modeling (using libraries like scikit-learn, XGBoost), and
optimization (e.g., using SciPy or CVXOPT for constrained optimization).

¢ Cloud data warehouse simulated via a database (e.g., PostgreSQL or cloud-native SQL store), with simulated role-
based access and encryption.

e ETL pipelines simulated using scheduled Python scripts.

e Reporting via Jupyter notebooks and visualization libraries (Matplotlib, seaborn), summarizing channel
contributions, carry-over, saturation, and optimized budgets.
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Advantages

e Higher modeling fidelity and realism: ML-based models capture non-linear spend-response, saturation, carry-over
(adstock), interactions and synergies — offering a more realistic representation of how marketing channels contribute
to outcomes.

o Improved predictive performance: As shown in our simulations, ML models (e.g., gradient boosting) deliver
substantially lower out-of-sample error (RMSE / MAE) than classical regression MMM, which can lead to better
forecasting and planning.

e Scalability and agility via cloud-native architecture: Cloud-based pipelines make it feasible to ingest large,
multi-channel data, retrain models frequently, and generate budget recommendations quickly — enabling near real-time
or weekly reallocation rather than quarterly or annual planning.

e Budget optimization and ROI-centric decision-making: The framework allows simulation of allocation scenarios
and chooses optimal spend distributions under business constraints, focusing on maximizing revenue or ROI rather than
arbitrary or heuristic allocations.

e Secure, governed data handling: With encryption, role-based access, audit logging, and governance policies, the
framework can meet data privacy and regulatory requirements — critical for enterprises handling sensitive marketing
and sales data.

e Interpretability with modern ML explainability tools: Although ML models are complex, techniques like SHAP
and partial dependence plots enable extraction of interpretable channel-level insights (carry-over effect, saturation
points, channel interactions), supporting transparency and stakeholder trust.

Disadvantages / Challenges

e Data requirements and quality constraints: The framework requires rich, clean, multi-channel data with
sufficient history. Poor data quality, missing values, or limited history may degrade model accuracy or make carry-over
/ saturation effects indiscernible.

e Model interpretability and stakeholder buy-in: Despite explainability tools, ML models may still be viewed as
“black boxes”—marketing stakeholders might find it difficult to trust or understand complex, non-linear model outputs
compared to simple regression coefficients.

¢ Resource and expertise demands: Implementation requires data engineering, ML modeling, cloud infrastructure,
and DevOps capabilities — not every firm may have such resources, especially small or medium enterprises.

o Risk of overfitting or false confidence: Without careful cross-validation and sensitivity analysis, complex ML
models may overfit historical patterns; optimized budgets derived from them may perform poorly if market conditions
shift or external shocks occur.

e Governance, privacy, and compliance complexity: While cloud storage and encryption help, actual deployment
with real customer-level or sensitive data may raise regulatory compliance concerns (data privacy, consent,
jurisdictional laws), especially if cross-region or multi-market.

e Operational complexity and maintenance overhead: Maintaining data pipelines, retraining models, updating
features, monitoring model drift, and ensuring robust governance adds operational overhead — possibly outweighing
benefits for firms with limited scale or budget.

IV. RESULTS AND DISCUSSION

Using the simulated multi-channel dataset and the cloud-optimized Al-based MMM framework described earlier, we
conducted a series of experiments to compare traditional regression-based MMM and modern ML-based MMM
(gradient boosting). Below we present the results, analyze findings, discuss practical implications, highlight robustness,
and reflect on limitations.

Model Performance: Predictive Accuracy

On the hold-out test set (last 24 weeks), the log-linear regression model (baseline MMM) yielded a root-mean-square
error (RMSE) of approximately 12.3 units of revenue (in the simulation’s revenue scale) and a mean absolute error
(MAE) of ~ 9.8 units. In contrast, the ML-based gradient-boosting model (GBM) achieved RMSE ~ 10.1, and MAE ~
7.9, representing roughly 18 % reduction in RMSE and 20 % reduction in MAE compared to the regression model.
This improved predictive accuracy suggests that the ML model was better able to capture underlying non-linearities,
carry-over effects, and channel interactions in the data.
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Moreover, when noise level in simulation was increased (simulating a more volatile real-world environment), the
relative performance gap widened: regression-based models degraded more sharply than ML-based models —
indicating the robustness of ML under noisy conditions. Cross-validation on training data (rolling-window) confirmed
that GBM generalized better, with lower variance in fold errors and less overfitting compared to high-degree interaction
regression models.

Insights: Carry-over (Adstock), Saturation, Channel Interactions

One advantage of the ML-based approach is interpretability beyond raw predictive performance. Leveraging partial
dependence plots and SHAP analysis, we deconstructed how spend on each channel influenced predicted revenue, and
uncovered several insightful patterns:

o Carry-over (Adstock) effects: Lagged spend features (e.g., previous week’s spend) had non-trivial SHAP
contributions, indicating that spend in prior weeks continued to influence revenue beyond immediate spend —
consistent with adstock theory. For example, social media channel spend showed a prolonged effect: while immediate
spend contributed significantly, lagged spend in prior one and two weeks also had measurable impact — reflecting
brand-building or delayed conversions.

o Saturation (diminishing returns): For channels like search and display ads, partial dependence curves flattened
beyond a certain spend threshold, indicating diminishing marginal returns. This saturation point approximately
corresponded to the “knee” in the response curve defined during data simulation, showing that the ML model reliably
captured the underlying non-linear spend-to-revenue function.

e Channel interactions / synergies: Interaction feature analysis revealed that combinations of certain channels (e.g.,
search + social, social + offline promotions) produced higher combined uplift than the sum of individual effects. That
is, synergies existed — a phenomenon that classical linear additive models cannot capture unless explicit interaction
terms are specified (and even then may underfit due to limited degrees). The ML model, by implicitly learning high-
order interactions, captured these synergies naturally.

These insights are valuable for marketing practitioners: they facilitate understanding not only which channels perform
best, but how spend timing (carry-over), saturating spend thresholds, and channel combinations shape overall
effectiveness.

Budget Optimization: Simulated Allocation Scenarios

Using the trained GBM model, we ran budget-optimization simulations under two main scenarios: (a) fixed total
weekly budget equal to historical average (“budget-neutral reallocation”); and (b) 10% increased total weekly budget
(“budget expansion”).

e Budget-neutral reallocation: The optimized allocation recommended reallocating ~ 30% of spend away from
high-saturation channels (e.g., search and display) toward channels showing high carry-over and synergy (e.g., social
media, offline promotions). Compared to historical (equal-proportional) allocation, predicted weekly revenue increased
by ~ 8%, and predicted ROI (revenue per spend dollar) improved by ~ 6%. This demonstrates the potential for more
efficient spend allocation even without increasing total budget — simply by reallocating toward underutilized but
effective channels.

o Budget expansion (10% more budget): The optimizer suggested modest increases to carry-over channels (social,
promotions), limited incremental spend on saturated channels, and reallocation of a portion into offline promotions to
exploit promotional spikes. The projected incremental revenue gain was ~ 12%, with incremental ROI remaining
positive (though with diminishing marginal returns). This indicates that extra budget, when intelligently allocated,
yields tangible uplift — but diminishing returns set in quickly for saturated channels.

We also conducted sensitivity analysis by varying budget constraints (e.g., imposing channel minimum spend floors or
maximum caps). Results showed that the optimized allocation shifted gracefully — the optimizer honored constraints
while still prioritizing high-yield channels, illustrating the flexibility and practical utility of the framework in real-world
business settings where marketers often impose business rules (e.g., minimum spend on brand media, contractual
obligations, or baseline saturation thresholds).

System Performance and Operational Feasibility (Cloud-Native Design)

Although our experiments were run on a simulated dataset and a local prototype, the architecture is designed for cloud
deployment — which, in real implementations, would support large-scale multi-channel data, regular retraining, and
near real-time optimization.
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In simulated timing tests, data ingestion and preprocessing for weekly data (5 channels, 100+ features including lagged
and interaction variables) completed in under 2 minutes. Model training (gradient boosting with hyperparameter tuning
via grid search) completed in ~ 8 minutes. Budget optimization (using non-linear programming) for multiple scenarios
ran in under 30 seconds. This suggests that — in a real cloud environment with scalable compute resources — weekly
or even daily refresh cycles are feasible, enabling agile media budget allocation.

Interpretability and Stakeholder Alignment

A recurrent concern among practitioners is the “black box” nature of ML-based MMM. To address this, we generated
explainability outputs:

o Feature importance rankings (by gain / SHAP value) for each channel, distinguishing immediate spend, carry-
over, and interactions.

o Partial dependence plots showing spend-response curves and saturation thresholds for each channel.

o Interaction effect visualizations (e.g., 2D grids) showing how spend combinations (search + social) produce
incremental effects beyond individual channel spend.

These deliverables help translate ML outputs into actionable insights that marketing managers can understand and trust
— e.g., “If we increase social spend by 20%, we expect this much revenue uplift; beyond spend level X, payback
diminishes,” or “Reducing search spend by 25% and reallocating to social yields better ROL.”

Limitations and Risks Observed

Despite promising results, several limitations and risks emerged.

o Dependence on data quality and structure: Because we used simulated data with clean structure, results are
optimistic. In real-world implementations, data may be messy — missing values, irregular reporting, inconsistent
formatting, missing lag or channel data (e.g., some offline media). Poor or incomplete data may impair model
performance or bias attribution.

e Overfitting risk and model drift: Although cross-validation mitigates overfitting, ML models may still learn
spurious patterns — especially if there are seasonal bursts or irregular promotional spikes. In real operations, market
conditions may change (new competitors, shifting consumer behavior, platform policy changes) causing model drift;
frequent retraining and monitoring are required.

o Interpretability limitations remain: While SHAP and partial dependence plots improve transparency, they do not
guarantee causal inference or guarantee that attribution reflects true causality. For example, synergy effects indicated by
the model may reflect correlated spend patterns rather than true interaction. Thus, stakeholders should treat model
output as directionally informative, not absolute truth.

e Operational complexity and resource overhead: Deploying and maintaining the full cloud-native pipeline, with
data ingestion, governance, model retraining, optimization, and reporting, requires cross-functional expertise (data
engineering, ML, DevOps) — a significant commitment for many organizations.

e Governance and compliance concerns with real data: When using real customer-level or transaction-level data,
privacy laws and data governance regulations (e.g., regional, cross-border) may complicate deployment. Ensuring
anonymization, encryption, consent, and auditability adds complexity.

o Simulation-to-reality gap: Because our evaluation uses simulated data, actual uplift in a real business context may
be lower, or positive results may not translate due to unobserved confounders (competitor activity, macroeconomic
shifts, brand effects, non-spend-related marketing) not captured in the model.

Implications for Marketing Practice

Despite limitations, the results suggest that a cloud-optimized, Al-based MMM framework can deliver meaningful
value for businesses seeking to modernize their media planning and budgeting. In particular:

e Firms with large multi-channel media spend — including digital, offline, and mixed-channel campaigns — stand to
benefit most, because complexity and interactions are harder to model with traditional methods.

e The ability to run frequent (weekly or monthly) budget optimization enables more agile and responsive marketing
— reallocating spend based on recent performance, rather than relying on static quarterly or annual planning.

e The interpretability outputs (SHAP, partial dependence) help build stakeholder trust and actionable budgets,
bridging the gap between ML complexity and marketing decision-making.

¢ Cloud-native design ensures scalability, data governance, security, and centralized data management — enabling
adoption even in large or regulated enterprises.
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Comparison with Traditional MMM

Compared with classical MMM (static regression-based), the Al-based approach offers superior predictive accuracy,
captures dynamics (carry-over, saturation, interaction), and supports optimization. Traditional MMM remains simpler,
easier to implement, and more interpretable (coefficients are straightforward); but when media complexity grows
(many channels, high frequency, interactive campaigns), the ML-based cloud-native MMM offers clear advantages.

V. CONCLUSION

This study proposes and demonstrates a secure, cloud-optimized, Al-based marketing mix modeling framework tailored
for modern multi-channel media environments and digital media analytics. Through simulated experiments, we show
that machine learning models — in combination with feature engineering for carry-over, saturation, and interaction
effects — deliver better predictive accuracy compared to traditional regression-based MMM, and enable optimized
budget allocation that improves predicted ROI. The cloud-native architecture supports scalable data ingestion, secure
data governance, frequent retraining, and near real-time budget optimization, offering marketers agility and actionable
insight. While challenges remain — notably data quality, resource requirements, interpretability, and governance
complexity — the benefits suggest that Al-powered MMM represents a practical and powerful evolution of marketing
intelligence for firms operating in complex, multi-channel landscapes. As marketing continues to fragment and data
proliferates, cloud-native ML-based MMM may become a cornerstone of effective, evidence-based media planning and
spend optimization.

VI. FUTURE WORK

Building on the promising results of this study, several directions for future work emerge:

First, applying the framework to real-world data across multiple industries and media mixes — including digital,
offline, and hybrid channels — would provide empirical validation and reveal practical challenges (data integration,
missing data, noise, external confounders). Real-world deployment would test the robustness of ML-based MMM
under market volatility, competitor actions, and shifting consumer behavior.

Second, integrating causal inference techniques into the modeling pipeline — for example, combining ML with
methods such as instrumental variables, difference-in-differences, or propensity score matching — could improve
confidence in attributing lift to media spend, rather than mere correlation. This is especially important for budget
optimization decisions that have significant financial implications.

Third, extending the framework to support multi-objective optimization — not just revenue or ROI, but also customer
lifetime value (CLV), brand awareness, long-term retention, or strategic KPIs. This would require combining short-term
revenue models with long-term customer-level models (e.g., CLV forecasting), and possibly integrating user-level data
in a privacy-compliant way (e.g., aggregated, anonymized, or through federated learning).

Fourth, enhancing model interpretability and stakeholder trust using explainable AI (XAI) frameworks, counterfactual
analysis (e.g., “what-if” spend scenarios), and user-friendly dashboards enabling non-technical marketing leaders to
understand model outputs and assumptions.

Fifth, examining operational and organizational adoption aspects: measuring how deploying such a framework
affects marketing decision-making cycles, budget flexibility, cross-department coordination, resource allocation for
data engineering/ML, and ROI in actual campaigns.

Finally, exploring privacy-preserving and governance-aware designs, especially for data-rich enterprises operating
across regions: implementing anonymization, access controls, data minimization, and compliance with regulation (e.g.,
GDPR, CCPA), possibly via federated learning or secure multiparty computation — thereby balancing analytic power
with ethical and legal responsibility.

By pursuing these directions, future work can advance Al-based MMM from a promising prototype to a production-
grade, enterprise-ready solution — enabling data-driven marketing excellence in the evolving media landscape.
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