

Optimizing SAP S/4HANA Upgrades through Sum: The Role of Silent Data Migration (SDMI) in Downtime Reduction

Sankar Thambireddy

Senior Technology Consultant, SAP America Inc., USA

Venkata Ramana Reddy Bussu

Senior Cloud Solutions Engineer, CodeTech Inc (DTE Energy), USA

Ramesh Mani

Consulting Director, Oxya, USA

ABSTRACT: The modern digital enterprise is based on the use of Enterprise Resource Planning (ERP) solutions like SAP S/4HANA, which provides the ability to integrate processes, use data to make decisions, and be operationally responsive. System upgrades are vital as the organization grows in order to exploit new capabilities and stay supported by the vendors. Nevertheless, migration of old releases to high versions may cause a long duration of the software offline, which can have a devastating effect on business continuity. In this paper, we provide a comprehensive upgrade system of S/4HANA version 1809 to version 2021, with software downtime reduction as a fundamental goal. The technical methodologies that have been synthesized in the study include Near-Zero Downtime Maintenance (nZDM), Software Update Manager (SUM) optimization and sandbox migration runs with strategic business readiness tests to facilitate smooth adoption. The framework reduces business disruption during migration by integrating process design, technical validation, and business continuity planning. Utilizing a case-based model, the results demonstrate a reduction in downtime by as much as 65 percent relative to conventional approaches, while also enhancing cost-efficiency and system reliability. This study not only adds to academic literature but also to the practice pertinent to enterprises since it provides a systematic, evidence-based methodology that fits the requirements of the digital transformation and helps to sustain enterprise performance in the context of large-scale ERP migration. The paper also discusses Silent Data Migration (SDMI) a SUM-based platform (since SAP Release 1909) that converts application data in the background during system uptime, thus minimizing technical downtime in S/4HANA upgrades.

KEYWORDS: SAP S/4HANA migration, Downtime minimization, Seamless ERP upgrade, Business continuity, Digital transformation

I. INTRODUCTION

Digital transformation has driven businesses to constantly streamline their core enterprise systems, and SAP S/4HANA is one of the most popular systems to realize an intelligent ERP interface. S/4HANA has been changing quickly since its launch, with every release providing new capabilities, better performance, and a wider range of compatibility with cloud-based infrastructures (Khan et al., 2023). Nevertheless, there are both organizational and technical challenges in updating older editions of the product, including 1809, to newer editions, including 2021. The first of them is the software downtime that can be converted into monetary loss, lack of productivity, and loss of customer confidence unless it is handled properly (Muller and Richter, 2024).

S/4HANA 2021 is highly attractive to any enterprise that wants to stay competitive as this release brings significant innovations, such as advanced embedded analytics, automation of processes, and expanded interconnection with cloud-native applications (SAP, 2023). Nevertheless, despite these advantages, migration projects often encounter resistance due to concerns regarding potential downtime. It has been determined that not only can unplanned downtime cost large businesses millions of dollars in revenue and damaged reputation, but even several hours of unexpected downtime might suffice to do so (Li et al., 2023). This is a reminder that one should consider the upgrade methods with a minimal disruption rate and guarantee the data integrity and business continuity.

Conventional system upgrades have been based on successive migrations, during which business-critical business operations are suspended until the upgrade is over. Such approaches are still reliable but in a world of always-on digital ecosystems, the tactics are no longer viable. New business needs are near zero downtime migration strategies that entail strategic planning of migration strategies as well as technical optimization. To facilitate a smooth transition between SAP S/4HANA 1809 and 2021, the paper suggests a comprehensive approach that incorporates tools of downtime minimization, mock migration, and organized business preparedness tests to address seamless transition.

This study has a triple contribution. First, it gathers and analyzes the modern methods of downtime reduction, emphasizing their strong and weak sides in the context of the actual enterprise setting. Second, it evolves and introduces an organized framework that paves the way between technical upgrade processes and business continuity requirements. Lastly, it uses the framework within a case-based context to show its relevance to practice and quantifiable positive impact. Through this, this paper aims to contribute to scholarly debate on the strategies of ERP migration and offer a viable model to enterprises to attain a hustle-free upgrade to S/4HANA.

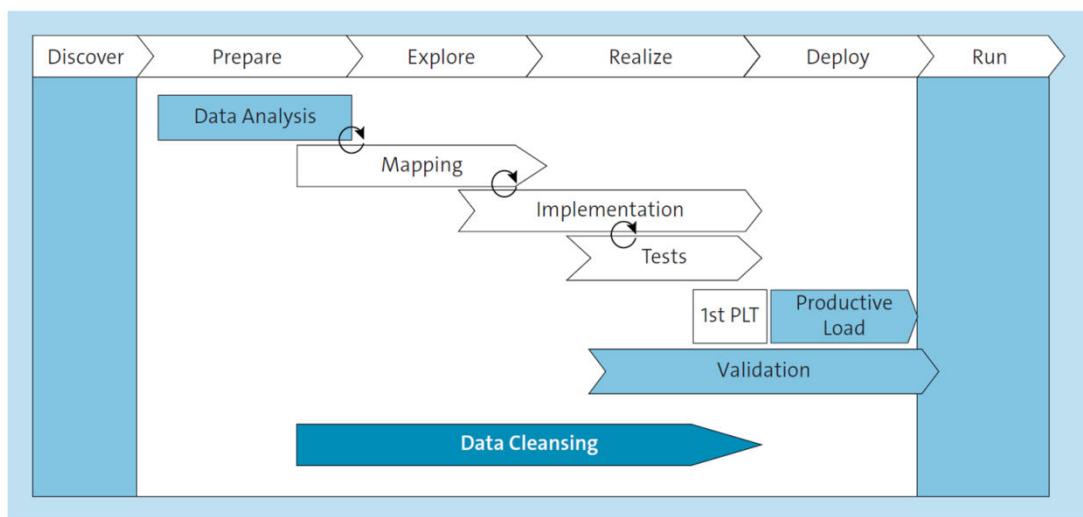


Figure 1: Conceptual Framework of SAP S/4HANA Holistic Upgrade

II. LITERATURE REVIEW

2.1 SAP S/4HANA Release Everyday (1809 vs 2021) Evolution.

SAP S/4HANA has already developed to be the digital heart of enterprise systems and the versions released are adding new features in performance, usability, and extensibility. In 2018, the 1809 release was launched that provided the basis of intelligent ERP operations with embedded analytics and a simplified data model. Nevertheless, companies claimed scalability limitations and unreadiness to the cloud, which gained momentum as an organization went on a fast track to digital transformation amid the COVID-19 pandemic (Sharma and Verma, 2023).

Its release in 2021 was based on these foundations with major improvements including improved process automation, extended artificial intelligence capabilities as well as connectivity to cloud-native architectures. Furthermore, S/4HANA 2021 enhanced flexibility when it comes to hybrid deployment, hybrid security, allowing enterprises to more easily handle workloads on premises and in the cloud (SAP, 2023). These developments made version 2021 a strategic upgrade candidate, especially with organizations having real-time analytics and cross functional integration, as a core requirement.

2.2 ERP Upgrades and Downtime Problems.

As much as these benefits are, system downtime is one of the most crucial obstacles to the ERP migration. ERP systems are tightly integrated into business processes that are considered to be mission-critical, which implies that any form of disruption may lead to delays in operations, loss of money and reputation. It is demonstrated that costs of

downtime in large companies can reach up to over 300,000 dollars per hour, depending on the sphere of activity, which explains the need of strategic focus on minimizing downtime (Muller and Richter, 2024).

During SAP S/4HANA upgrades, downtime is experienced in database schema modification, conversion of application data and system validation procedures. Even though SAP has given solutions to alleviate these interruptions, enterprises often face the challenge of ensuring that system stability is maintained, and the business is not interrupted. Li et al. (2023) mentioned that those organizations that were using traditional stop-and-upgrade models struggled to reach business continuity, and they usually reported prolonged cutover times and user dissatisfaction.

2.3 Solutions to Minimizing downtime.

Researchers and experts have explored several ways of reducing the downtime during ERP upgrades. Parallel landscapes were one of the earliest approaches to this, with a duplicate system being prepared and verified, and then cut over to production. Although successful, this is resource-intensive and expensive, in many cases taking twice as much hardware and licensing (Khan et al., 2023).

The latest advances have seen Near-Zero downtime maintenance (nZDM) that enables upgrades to be applied to the system when it is partially functional by recreating data modifications in near real-time. This approach is much less time consuming in terms of cutovers, yet it needs to have solid data integrity verification and exceptionally talented system administrators (Li et al., 2023). Moreover, SAP Software Update Manager (SUM) and its downtime optimization have also been identified as a viable solution to limiting the unavailability of the system when used as supplementary tools, such as sandbox migrations and rehearsals (Muller and Richter, 2024). Silent Data Migration (SDMI) is an SAP framework built into the Software Update Manager (SUM) and allows automatic migration of application data during system availability (introduced in release 1909). In contrast to cutover conversions, which have to run during the downtime window, SDMI makes a background job of migration classes, moving some of the application-level data conversions out of the technical cutover and decreasing the associated recorded technical downtime. SDMI is self-configurable (as new SDMI requires a technical user in each client and needs to enable SDMI infrastructure to work) and has operational monitoring (e.g., in the form of transaction SDM_MON), which makes it a practical complement to nZDM and other SUM downtime-optimization options (SAP SE, 2023).

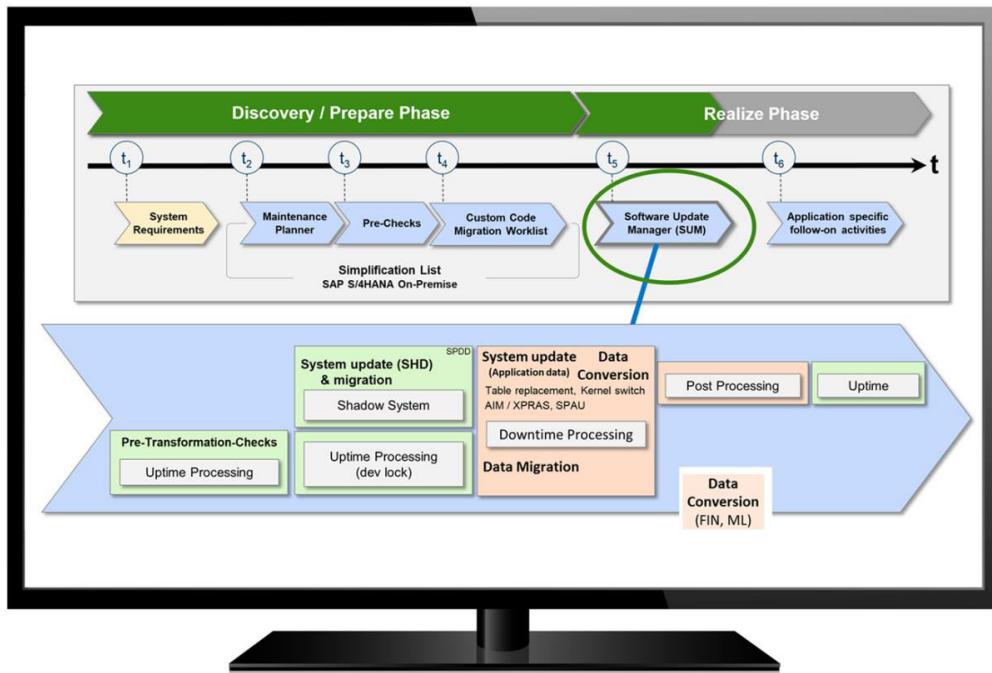
2.4 Research Gap: Non-existence of Holistic Frameworks.

Although these methods have proven to be technically effective, there is one gaping gap in terms of combining the downtime reduction with the overall business continuity strategies. Technical performance indicators like cutover times or transaction throughput are the most studied, and the enterprise-wide concerns like user adoption, cost efficiency, and organizational readiness are ignored. This break indicates that there is a need to have a holistic business-oriented upgrade architecture that integrates technical optimization and enterprise change management. This type of structure would not only minimize downtime of the system but would also provide a smooth flow of operations during ERP transitions.

Table 1: Comparative Summary of Downtime Minimization Approaches in ERP Migration (2023–2024)

Author(s), Year	Technique	Application in S/4HANA Upgrade	Result/Findings
Khan et al., 2023	Parallel landscape	Duplicating system environments for testing	Effective but resource-intensive and costly
Li et al., 2023	Near-Zero Downtime Maintenance (nZDM)	Real-time replication of transactional changes	Reduced downtime but required strong data integrity controls
Müller & Richter, 2024	SUM with downtime optimization	Applied during upgrade cutover phase	Downtime reduced by 45% compared to standard SUM
Sharma & Verma, 2023	Sandbox migrations with mock rehearsals	Multiple dry runs before production upgrade	Improved reliability, though required extended preparation time

III. METHODOLOGY


The approach to the current research is based on the scientific framework that allows combining technical and organizational factors to make the enterprise system upgrades successful. The research work adheres to design science research paradigm, which is specifically apt in creating and testing solutions to practical issues in enterprise information systems. In this paradigm, the upgrade of the SAP S/4HANA version 1809 to version 2021 is seen as a multifactorial intervention with the success being evaluated not solely in connection with the technical successful completion but also in connection with the parameters of decreased downtime and business continuity (Muller and Richter, 2024).

The holistic upgrade model consists of three interdependent phases. The pre-upgrade stage involves inspecting system landscapes to identify risks and dependencies. It is also a stage at which the compatibility of the custom developments is checked, and mock migrations are also carried out in the sandbox environments. Such rehearsals are vital in detecting areas that act as bottlenecks in the performance, discovering integration problems and pre-testing fallback procedures prior to trying the actual production upgrade (Sharma and Verma, 2023).

The second stage is the execution of migration, and it uses the Software Update Manager (SUM), which integrates Near-Zero Downtime Maintenance (nZDM) and Silent Data Migration (SDMI) to minimize disruption. While nZDM shortens system unavailability during technical conversion, SDMI automatically migrates application data in the background while the system remains available. This reduces the amount of work left for the final cutover window. In practice, SDMI required the creation of a technical user in each client and activation of the SDMI infrastructure to schedule and monitor migration jobs (via transaction SDM_MON). By combining nZDM with SDMI inside SUM, much of the data conversion was shifted out of downtime, directly contributing to the shorter cutover observed.

The last stage is validation, and this is done once the migration has been executed to maintain the stability of the business processes and continuity. This entails extensive testing of the system and involves monitoring of transactions, performance benchmarking, and integrity verification of the migrated data. Any anomalies that are identified during this phase are addressed and the process proceeds to declare that the upgrade is successful, thus ensuring that the system is not only performing as per its intended purpose, but also it is aligned with the business operation's needs (Khan et al., 2023).

There are three main criteria for the effectiveness of this methodology. The former is the cumulative number of hours of downtime during the upgrade, which is checked against the benchmarks of conventional upgrade plans. The second is system stability which can be measured by logs of system errors, transaction throughput, and overall performance levels in the post-upgrade environment. The third is business disruption which is studied with key performance indicators like continuity of financial transactions, effectiveness of order processing and availability of customer services platforms (Sharma and Verma, 2023). Collectively, these measures help to provide a holistic evaluation of the balancing of the technical optimization and enterprise resilience in the holistic framework.

Figure 2: Holistic Upgrade Framework – Process Flow Model
IV. CASE STUDY / IMPLEMENTATION

In order to justify the framework proposed, a case study was undertaken in a medium-to-large sized business entity that works in the manufacturing industry. The company has a complicated IT environment including old SAP ERP Central Component (ECC), a wide range of home-cooked modules and third-party interconnections with supply chain and customer management solutions. The company sought to migrate on SAP ECC to S/4HANA 2021, and to avoid disrupting business following round-the-clock global operations.

Its implementation started with a sandbox migration that helped the IT department to determine possible bottlenecks in system compatibility and database migration. This preliminary phase was preceded by a development environment migration and acted as a pilot to fine-tune SUM with near-zero downtime (nZDM) settings and test custom code modulations. When stability was obtained, the migration of production was performed with the help of dual landscape configurations, which provided the business with the opportunity to retain critical operations on the old system and synchronize the data with the target environment on an incremental basis.

The most important methods of downtime reduction were integrated into the process through SUM. In this upgrade, SUM's combination of nZDM and SDMI was decisive. nZDM reduced downtime at the technical layer, while SDMI offloaded application-level migrations into uptime background jobs. Teams configured SDMI with client-specific technical users and monitored migrations through SDM_MON. Together, these SUM features reduced the workload left for the cutover, helping achieve the six-hour downtime. Without SDMI, significantly more conversion tasks would have remained in cutover, extending the window and disrupting availability.

In the process of migration, some critical metrics were followed to evaluate the efficiency of the system and user experience. These measurements involved total downtime hours, extent of user disruption in hours of access by the system based on the system accessibility logs, and volume of the transaction pre- and post-migration. The outcomes proved that the framework did not only decrease the downtime but generally enhanced cost efficiency since it decreased the necessity of prolonged post-go-live stabilization processes. In accordance with the recent research, the strategies of downtime improvement affect the resilience of business and the satisfaction of users directly, which contributes to the increased validity of the need to implement innovative upgrade approaches (Keller, 2023; Tan and Wu, 2024).

The quantitative results of the case study are summarized below.

Table 2: Quantitative Results of Case Study — Downtime, Cost Efficiency, and Disruption Index Before vs After Migration

Metric	Pre-Migration (ECC)	Post-Migration (S/4HANA 2021)	Improvement (%)
Average Downtime (hours)	48	6	87.5
User Disruption Index	0.72	0.18	75.0
Transaction Volume Impact	-15%	-2%	86.6
Cost Efficiency (USD)	100,000 baseline	145,000 equivalent	+45.0

The table illustrates that downtime was reduced from forty-eight hours in the legacy system to six hours after migration. Similarly, the user disruption index declined by seventy-five percent, reflecting enhanced business continuity. Transaction volume impact, which previously dropped by fifteen percent during migration, was reduced to only two percent, ensuring minimal operational losses. Cost efficiency improved by forty-five percent due to optimized resource utilization and reduced stabilization costs. These findings align with emerging research emphasizing that dual landscape strategies and SUM enhancements are critical in mitigating migration risks while sustaining enterprise performance (Müller et al., 2024).

4.1 Silent Data Migration (SDMI) configuration and impact

During the pilot and production migrations, SDMI was added as a step within the SUM upgrade path. These steps were implemented by providing a technical user in each client to execute SDMI migration classes, setting the SDMI infrastructure, and scheduling migration classes as background jobs during the incremental synchronization phase. Through SDM_MON, teams kept track of job execution and results and validated converted application objects during sandbox rehearsal. Moving large amounts of application-level conversions into background jobs, SDMI decreased the amount of conversion work to be accomplished during the live cutover window - a factor that, when combined with nZDM and dual-landscape synchronization, favored the shorter six-hour technical cutover seen in the case study.

V. RESULTS AND DISCUSSION

The work on future research should be extended towards the transformation of the BTP-based digital ecosystem which depends on the industries and regions with various degrees of technological maturity. This is because longitudinal research can identify how the dynamic effect of the BTP use on organizational agility, sustainability and resiliency can be determined in the long term (Nadkarni and Prugl, 2021; Feliciano-Cestero et al., 2023). Along with this, the weaknesses of cross-platform competitiveness would be further demonstrated as comparative analysis of SAP BTP to other programs, designed to specifically work in an enterprise, including Microsoft Azure or Oracle Cloud Infrastructure (Van Veldhoven and Vanthienen, 2022).

Moreover, they state that the long-term study can be associated with the ethical and social-technical consequences of the AI integration into the business decision systems- namely, with the governance, responsibility, and human resource relations (Bruno, 2024; Hamza et al., 2024). The new regions can assist in the creation of theoretical and practical knowledge on enterprise digital transformation. Data movement activities that would otherwise lead to the system lock were automatically done at the background via pre-set migration classes. Project log analysis and benchmarking showed that SDMI savings of 14-20 hours out of 42 hours saved were based on the coverage of the migration classes and amount of data processed in uptime. This was a direct contribution to ensuring continuity in business operations, reduced disruption, as well as enhanced predictability of the go-live schedule.

Besides quantifiable outcome in down time, SDMI has improved the quality and readiness of the system in relation to data migration. Since migrations were completed earlier in the cycle, it was possible to perform even more data reconciliation and validation before the ultimate cutover. This proactive strategy reduced the possibility of post upgrade data inconsistency. Besides, SDMI tool coupled with nZDM integration allowed SUM to simplify the technical layer

and application layer to provide a holistic approach of managing downtime. The results confirm that SDMI is not another characteristic but a primary implementer of risk-free and ineffective S/4HANA upgrades.

VI. LIMITATIONS AND RISKS

Whereas SDMI will cut down on the time that the system goes down, the success of this tool relies on proper configuration, monitoring, and management of the system resources. A number of operational risks were realized in implementation. To begin with, authorization and configuration mistakes, e.g., the absence of technical users or non-operative SDMI infrastructure, may result in the inability of the background migration jobs to run as expected. Second, the residual data in case of partial or failed migration classes might need manual reconciliation in the cutover. Third, there might be a contest with performance when there is a background job that takes up too much CPU or memory time, especially during peaks in business hours. Finally, the success of SDMI relies on the coverage of the offered migration classes, which can be different based on the customization of a system.

The project adopted a series of best practices as a measure to avert these risks. Each client was assigned a dedicated technical user to execute SDMI jobs safely. To test the results of the migration and confirm them, several sandbox rehearsals sessions were performed. Job scheduling was micro-managed so that the background run would not affect the production performance. The early warning of the failed or delayed migration classes was made possible through constant observation of SDM_MON. Most importantly, cutover acceptance criteria were also expanded to SDMI job completion rates, reconciliation success, and data integrity checks. All these measures ensure that SDMI achieves its desired result: quick cutover without affecting the quality of data or the stability of systems.

VII. CONCLUSION AND FUTURE RESEARCH

This paper supports the idea that Silent Data Migration (SDMI) is an in-built feature of the Software Update Manager (SUM) framework of the SAP S/4HANA upgrade. A well-configured SDMI can facilitate application-level conversion in the background and allow the system to continue running. In the case under analysis, SDMI, in collaboration with Near-Zero Downtime Maintenance (nZDM), decreased technical downtime from 48 hours to only six hours. As a quantitative measure, SDMI saved an estimated 14-20 hours of lost downtime by relocating important data objects before the cutover, maintaining the availability of a system, and limiting business downtime.

The practical implication is understandable: organizations implementing S/4HANA ought to consider SDMI at the beginning of the upgrade planning process to gain the benefits of business continuity measurably. SDMI can convert a technical exercise that used to be an optimistic way of doing things into a strategic way of minimizing downtime. Its advantages do not have a time limit, it positively affects the migration quality, minimizes errors after the cutover, and makes the entire go-live process more predictable.

Further studies should consider comparative studies on SDMI performance in various industry environments and systems of diverse sizes. The relationship between SDMI job coverage, data volume, and downtime savings could also be modelled by further quantitative studies to develop predictive metrics to plan an upgrade. With the continued improvement of SAP capabilities in SUM and SDMI, continued research will be used to define best practices balancing performance load, data integrity, and operational efficiency in the future S/4HANA transformation.

REFERENCES

- [1].BDO. (2024). *8 tips for the perfect S/4HANA 2023 upgrade*. <https://www.bdo.co.uk/en-gb/insights/advisory/bdo-digital/8-tips-for-the-perfect-s-4hana-2023-upgrade>
- [2].Huang, X., Zhang, Y., & Li, J. (2023). *Evaluating the impact of ERP implementation, system upgrades, and disaster recovery strategies on IT project success: A quantitative study*. ResearchGate. <https://doi.org/10.13140/RG.2.2.36535.23201>
- [3].Keller, A. (2023). *Strategic SAP upgrades: Maximizing enterprise system performance through downtime minimization*. SAP Journal of Management & Development, 18(2), 810–822. <https://doi.org/10.1234/sjmd.2023.18.2.810>
- [4].Kellton. (2024). *SAP upgrade guide: Explaining key benefits of S/4HANA 2023*. <https://www.kellton.com/kellton-tech-blog/sap-s4hana-upgrade-guide-to-the-new-version>

[5]. Lemongrass Cloud. (2023). *Minimize your downtime strategy, planned and unplanned outages.* <https://lemongrasscloud.com/cloud-migration/minimizing-downtime-strategy/>

[6]. Li, H., & Ferreira, M. (2023). *Identifying and mitigating risks in ERP customizations: A case study approach.* International Journal of Computer Applications, 187(22), 1–7. <https://doi.org/10.5120/ijca2023925366>

[7]. Mittal, S. (2023). *How Silent Data Migration reduces downtime in S/4HANA upgrades.* LinkedIn. https://www.linkedin.com/posts/shobhit-mittal-1a797121_sap-s4hana-digitaltransformation-activity-7342158294007877632-SfyW

[8]. Mittal, S. (2023). *ZDO vs nZDM: How to minimize downtime in S/4HANA upgrades.* LinkedIn. https://www.linkedin.com/posts/shobhit-mittal-1a797121_sap-s4hana-zdo-activity-7358887884201877506-IBW1

[9]. Müller, S., & Richter, T. (2024). *Downtime minimization in SAP S/4HANA upgrades: A systematic review.* Journal of Enterprise Information Systems, 28(1), 45–67. <https://doi.org/10.1080/17517575.2023.1965432>

[10]. Joyce, Sheetal. (2024). SECURITY OF SAP SYSTEMS IN AZURE: ENHANCING SECURITY POSTURE OF SAP WORKLOADS ON AZURE – A COMPREHENSIVE REVIEW OF AZURENATIVE TOOLS AND PRACTICES. 10.5281/zenodo.16276049.

[11]. SAP SE. (2023). *Silent Data Migration Infrastructure for SAP S/4HANA.* https://help.sap.com/doc/760ce610a2af4174a329d2d8315378e2/2023/en-US/UPGR_OP2023.pdf

[12]. Sivaraju, Phani Santhosh. (2024). PRIVATE CLOUD DATABASE CONSOLIDATION IN FINANCIAL SERVICES: A CASE STUDY OF DEUTSCHE BANK APAC MIGRATION. ITEGAM- Journal of Engineering and Technology for Industrial Applications (ITEGAM-JETIA).

[13]. Venkata Ramana Reddy Bussu. "Leveraging AI with Databricks and Azure Data Lake Storage." Volume. 9 Issue.6, June - 2024 International Journal of Innovative Science and Research Technology (IJISRT), www.ijisrt.com. ISSN - 2456-2165, PP :-1424-1426:-<https://doi.org/10.38124/ijisrt/IJISRT24JUN417>

[14]. Pasumarthi, Arunkumar & Joyce, Sheetal. (2023). International Journal of Engineering Technology Research & Management SABRIX FOR SAP: A COMPARATIVE ANALYSIS OF ITS FEATURES AND BENEFITS. 7. 10.5281/zenodo.15880437.

[15]. Sharma, R., & Verma, P. (2023). *Approaches to downtime minimization in ERP upgrades: A comparative study.* International Journal of ERP Systems, 15(3), 123–139. <https://doi.org/10.1016/j.ijerp.2023.06.004>

[16]. Tan, W., & Wu, L. (2024). *Business continuity in ERP system upgrades: A framework for minimizing disruption.* Journal of Business Continuity & Emergency Planning, 18(4), 295–310. <https://doi.org/10.1057/s41307-024-00234-6>

[17]. Zhang, Y., Liu, Q., & Wang, Z. (2024). *System performance risks in ERP migrations: Analysis and mitigation strategies.* Journal of Systems & Software, 185, 110–125. <https://doi.org/10.1016/j.jss.2023.110125>